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Abstract

We connect Fourier transforms between compactified Jacobians over the moduli space of stable
curves and logarithmic Abel-Jacobi theory. As an application, we compute the pushforward of
monomials of divisors on compactified Jacobians in terms of the twisted double ramification
cycle formula.

1 Introduction

1.1 Overview

For an L2-function f : TY := RY9/Z9 — C, the integral of f can be evaluated as the 0-th Fourier
coefficient

f(x)dz = F(0)
T9

of the Fourier transform f(m) = fopg f(@)e ™M™ Tz, m € Z9.

An analogous statement holds for a family of abelian varieties. Let w : A — B be a family of
principally polarized abelian varieties with unit section e. Let § : CH*(A4,Q) — CH*(A, Q) be the
Fourier-Mukai transform, given by the Poincaré line bundle. For a class a € CH*(A, Q), we have

(@) = e*F(a), (1)

replacing integration with the pushforward =, and replacing evaluation at 0 with the pullback e*.
Therefore, (1) provides a useful tool for studying the pushforward, if one knows enough about the
Fourier transform — for example, its compatibility with the weight decomposition of CH*(A, Q).

We study here the intersection theory of certain families of degenerating abelian schemes — the
fine compactified Jacobians 7 : j;n — ﬂg,n over the moduli space of stable curves — using the
Fourier transform. Two challenges arise: (i) the Poincaré line bundle does not extend to a line bundle
on the product of the compactifications, and (ii) the relative group structure is lost. To address these
issues, firstly, we construct a ‘minimal’ logarithmic modification of the product of two compactified
Jacobians where the Poincaré line bundle admits a unique line bundle extension. This construction
yields a logarithmic desingularization of Arinkin’s kernel [5, 6] and provides the Fourier transform
with a recursive structure. Secondly, we link the Fourier transform with logarithmic Abel-Jacobi
theory. The resolved Abel-Jacobi section of Holmes-Molcho-Pandharipande-Pixton-Schmitt [34]
is related to the universal double ramification (uniDR) formula of Bae-Holmes-Pandharipande-
Schmitt-Schwarz [8]. We study the Fourier transform of the class of the resolved Abel-Jacobi section
and show that the uniDR formula and Fourier transform share the same genus recursive structure,
enabling us to compute the Fourier transform effectively.

We establish formula (1) for compactified Jacobians under an appropriate normalization of
Fourier kernel. By combining this formula with the calculation of the Fourier transform, we show
that the pushforward of certain monomials of divisors can be expressed in terms of the twisted double



ramification (DR) cycle formula DR (b; a) introduced by Janda-Pixton-Pandharipande-Zvonkine [36].
Our formula involves all codimensions ¢ < ¢g' and considers individual coefficients of the twisted DR
formula as a polynomial in b € Z and a € Z™. Thus, we offer a geometric interpretation of DRg(b; a)
in both contexts in terms of intersection theory on compactified Jacobians.

1.2 Compactified Jacobians

Let p: Cypn — My, be the universal curve with n > 1. A stability condition € of degree d for p
assigns a rational number to every irreducible component of every stable curve (C,x1,...,x,) of
genus g with n marked points satisfying the following two conditions:

(a) the sum of the values of € over the irreducible components of C' equals d, and

(b) € is additive under all partial smoothings of the curve C.

A prestable curve C’ is quasi-stable if the relative dualizing sheaf wer is nef and chains of unstable
components have length at most 1. A line bundle L on C’ is admissible if L has degree 1 on each
unstable component of C”.

With respect to a stability condition €, there exists a stability inequality defining when an
admissible line bundles on a quasi-stable curve is e-stable (resp. e-semistable). A stability condition
€ is non-degenerate if there are no strictly e-semistable admissible line bundles. A stability condition
€o of degree 0 is small if line bundles of multidegree 0 on underlying curves are ¢y stable.

For a non-degenerate stability condition € of degree d for p, there exists a moduli space j;,n
of e-stable admissible line bundles on quasi-stable curves over M, ,, ([38]). It is a proper, smooth
Deligne-Mumford stack of dimension 4g — 3 + n. In particular, for small stability condition ey, j;?n
contains the Jacobian of multidegree zero line bundles JgQ,n as an open substack.

The compactified Jacobian 7;71 carries a universal family which can be used to define tautological
classes on 7;71. There exists a universal quasi-stable curve with n sections,

€
g,n>

.*qS i .*E —-4ds -
p:Cgp—J zidg, > Copyt=1...,n,

with a universal admissible line bundle £ on 53;. We choose the universal admissible line bundle
to be trivialized along the first marking. For 1 < ¢ < n, the £-class at the ith marked point is
defined by &; := z}c1(L£) and the ko class is defined by ko1 = p«(c1(wp,log)c1(£L)). The O-divisor is
defined by © := —%p*(cl([,)Q). The divisor classes &, © and ko, span the rational Picard group
Pic(j;n) ®z Q modulo divisor classes pulled back from M,,, ([27]).

1.3 Twisted double ramification cycle formula
Let b € Z be an integer and let a = (a1,...,a,) € Z™ be a vector of integers satisfying

ap+ - +ap=(29g—-2+n)b. (2)

Let r be a positive integer. We denote by DRS’T(b; a)? the codimension ¢ component of the tautological
class

w(h)w(h')
b2 n g2 F—h'(D) 1 —exp (—f(% + wh/))
exp | ——#x1 +Zz¢i) : Z T ()« H
( 2 o 2 TEGy.n |Aut (L) e=(h,h)EE(T) Yh + P
wEV\/rW’b

'If the codimension c is greater than g, then DRj (b; a) vanishes by [19].
2In the literature, this formula is denoted by Pg”"’b(a), while DRg(a) refers to the twisted double ramification cycle,
which corresponds to the codimension g part of the double ramification cycle formula.



in CH*(M,.,, Q). For a detailed explanation of the notation, we refer to Section 6.1. For sufficiently
large r, DR7"(b;a) becomes polynomial in 7 [36]. We denote by DR{(b;a) the value at r = 0 of the
polynomial associated with DRy (b; a).

The formula DR (b;a) is a polynomial of degree 2c in the variables b, a1, ..., a, (see [62, 61]),
well-defined only modulo the relation (2). If we rewrite a; in terms of the other variables using (2),
then we can treat it as a polynomial in the other variables alone, with no relations. It then makes
sense to take a specific coefficient of the polynomial, and we write

[DR;(ba a)]bmaé’Z

b

akr in DR¢(b;a) in CHY (M, ,, Q).

for the coeflicient of the monomial bmaéC2 ay

1.4 Intersection theory on compactified Jacobians

For a nondegenerate stability condition € for the universal curve C,, — M,, of degree d, let
e J n — Mg, be the compactified Jacobian. For the definition of the tautological classes of T g
we choose the universal line bundle which is trivialized along the first marking — so in particular,

& =0.

Theorem 1.1. Let 7 : j;n — M, be the compactified Jacobian for a non-degenerate stability
condition €. Let ¢,m, ko, ..., k, be non-negative integers.

(a) If 20+ m+ 3, k; < 2g, then 7, (O°k{H 5% -+ €k) = 0 in CH* (M, Q).
(b) If 20 +m + " k; = 2g, then

7T*<Cz'€ K;Ol H

In particular, the pushforward is independent of the choice of stability condition.

ko kn *
b7rLa2 ,,,ann

) )9~'[DRY " (b; a)]

(c¢) For any ¢,m,ky,..., ky,, the pushforward W*(@eﬁg}gé’? - &) lies in the tautological ring
R*(My.n).

When € is small, the number 2/ 4+ m + ), k; is the weight of the class @%6’}1 ]2‘72 - &k over the
locus /\/lgCtn C Mg, where 7 is an abelian scheme. Passing to rational cohomology, Theorem 1.1 (a)
can be obtained by the perverse filtration (Section 8.3). The closed formula and the independence
of stability condition in Theorem 1.1 (b) is not at all clear from previous results.

Theorem 1.1 (b) consists of the leading terms of the DR cycle formula, viewed as a polynomial
in b,a. By Theorem 1.3 below, the full DR cycle formula can be recovered from these leading terms.
Therefore Theorem 1.1 gives refined geometric meaning of the DR cycle formula.

Although our methods do not give a simple formula for the pushforward when 2¢+m + )" k;
is greater than 2g, we can at least say that the pushforward is tautological. In this case, the
pushforward depends on the choice of stability condition €, so explicit formulas will necessarily be
more complicated.

Theorem 1.1 (c¢) only implies that classes in the subring of CH* (J¢ s> Q) generated by divisors
push forward to tautological classes. The forthcoming paper [10] will show that arbitrary tautological
classes on the logarithmic Picard group push forward to tautological classes.



1.5 Logarithmic Poincaré line bundle and Arinkin’s kernel

Our construction of the extended Poincaré line bundle is motivated by the duality of the logarithmic
Picard group. For smooth curves and their relative Jacobians, the Poincaré line bundle can be
described as the Deligne pairing of two universal line bundles. This construction extends to
logarithmically smooth curves. For a log smooth curve C' — B and the logarithmic Picard group
LogPicy — B, introduced by Molcho-Wise [51], the logarithmic Poincaré line bundle?

Plo¢ _ LogPicy x g LogPico

is defined via the Deligne pairing of the two universal logarithmic line bundles, which induces a
“geometric” duality isomorphism LogPicO(LogPicoc) = LogPicOC. Any log line bundle on a log scheme
(or algebraic log space) X is representable by a line bundle on a logarithmic modification of X, and
thus, we can represent P'°8 by a line bundle on some logarithmic modification of LogPic% X BLogPiCOC.

To connect the geometric duality obtained from the logarithmic Poincaré line bundle to derived
equivalences among compactified Jacobians is however a more delicate issue: the logarithmic modifi-
cation and line bundle representing the log Poincaré must be chosen carefully. For nondegenerate
stability conditions €; and ea, jﬁé X 37602 is a natural logarithmic modification of LogPicOC X BLogPicOC7
but the classical Poincaré line bundle on Jo X g Jo does not extend to a line bundle on it; it extends
to a line bundle P only up to the open locus J& xp JoUJg xp J¢2, where J§ C J¢ denotes the
locus of line bundles.

Theorem 1.2. For B = M, there exists a logarithmic modification f : jg) — J¢ xp J¢&, where

(a) j((?) is smooth and log smooth. The map f is an isomorphism over J¢ X p TC% U jﬁé xp J&

and its complement has codimension 2;

(b) if P denotes the unique line bundle on 7(02) extending P, then P represents Pg;
(c) the pushforward P := R fﬂ’5 is a maximal Cohen-Macaulay sheaf extending P;
d) §:=—@P: D (Jao)— Db

—F€ . . . .
coh b w(J&) is an equivalence between derived categories.

This provides an independent proof that the line bundle P admits a maximal Cohen-Macaulay
extension, a result originally proven by Arinkin [5, 6] (later generalized in [43, 44]). Following
Arinkin’s argument, the kernel P induces a derived equivalence between 72 and jECQ. Consequently,
we can use the explicit line bundle P as the kernel of our derived equivalence.

1.6 Structure of the universal double ramification cycle formula

The universal double ramification formula is a natural lift of the twisted DR formula. Let *Bic,,, o
denote the universal Picard stack, which parametrizes prestable curves of genus g with n markings
and total degree 0 line bundles. For b € Z and a € Z" satisfying (2), the uniDR formula is a
tautological class uniDR{(b;a) in CH(Bic, ,, o, Q) that generalizes the DR formula [8]. The uniDR
formula is also polynomial in b, a;. For a detailed explanation, we refer to Section 6.5.

The top degree part of the uniDR formula is defined by the relative group structure of Pic,, o
over the moduli stack of prestable curves 9, ,. Under the pullback along the “multiplication by
N” map [N] : Bic, ,, o — Pic, ,, ¢, the uniDR formula becomes polynomial in N. We define the top

C

degree part uniDR(b;a) as the part such that the sum of the weight (with respect to [N]) and the
polynomial degree (with respect to b, a;) is exactly 2c.

3The construction of P'°8 will appear in the forthcoming work [50] and it will not be used in this paper.



e~

We prove a correspondence between uniDR and its top degree part uniDR. The correspondence
is most naturally stated using the negative zeta value regularization convention:

o0

Sk = ((d—1) = 252 for g >0, (3)
2 At 2

where B,, are the Bernoulli numbers.

Theorem 1.3 (Theorem 6.6). Let g,c,n > 0. For each 0 < m < g, let jy,, : Picp, — Pic, ,, o be
the stratum parameterizing curves with degenerations forced by gluing the last m pairs of markings
and let g, : Picp, — Picy_p, om0 be the (Gy,)"-torsor associated to partial normalization. Then

min(g,c) m

e IR « T c—m

uniDRG (b:2) = D7 5 (i) (4m) [ > (T k) uniDRy (553, ki, ks, oy i) |
m=0 ki,.okm>0 i=1

where the infinite sum over k; of a polynomial in k; is evaluated via (3).

By pulling back Theorem 1.3 along the unit e : M, — Bic, ,,, we obtain genus recursion for
the DR cycle formula (Theorem 6.1).

We also prove an identity involving the pushforward of the regular (twisted) DR cycle formula
under the map p : My ,11 — Mg, forgetting the last marking.

Theorem 1.4 (Theorem 7.1). Let g,c,n > 0. Let F' = p.DR{(b;a1,...,an41) € CH Y (M) be
viewed as a polynomial in b, ay, . .., a,;1 modulo the relation (1). Then F is a multiple of (a1 —b)2.

Moreover, we have the identity

F j—
[(aﬂ—b)Q] :(g-l—l—c)DR; 1(b;a1,...,an),
" Gn4+1:=b

A generalization of this theorem to the uniDR formula is given in Section 7.6 (Theorem 7.7).

1.7 Fourier transform and the resolved Abel-Jacobi sections

We sketch our proof of Theorem 1.1 here; full details are found in Section 8. Our key approach to
computing the Fourier transform is by linking it to logarithmic Abel-Jacobi theory.

Let €p, € be non-degenerate stability conditions. Following the appropriate normalization as
in Maulik-Shen-Yin [42], we consider the Chow-theoretic realization of the Fourier transform of
Theorem 1.2(d) given by the following relative algebraic correspondence:

§ o= f (1T — P Ty0 s 70 ch(P)) : CH*(J,,,Q) — CH*(J,,.. Q). (4)
We denote its inverse by §~!. Choose ¢y to be small, so that the unit section e exists in j;?n.

We start from the Fourier image of the resolved Abel-Jacobi section. By [34], the rational
Abel-Jacobi section admits a logarithmic resolution aj, : ﬂ;’ob;a — jge?n . Using Theorem 1.2, the
image of aj;, has the form:

5 ([ajpa)) = exp <—b/€0,1 + Z aifi) (14 a) s (5)
i=1



where 7., is a class associated with an explicit piecewise polynomial (in the sense of [48, Section
5.5]) on j;n which is supported away from the locus of integral curves (Proposition 5.8).
Logarithmic Abel-Jacobi theory computes the locus of the resolved Abel-Jacobi section. Using
[8] (Proposition 8.2), the class of the image of aj,, can be written as the codimension g part of the
uniDR formula:
[8,5] — uniDRY(b; 2)

L ECHITS,.Q). (6)

g,n

Consider the inverse Fourier transform from j;’n to j;?n. Combining (5) and (6), we obtain

uniDRY(b; a) S0 = [ajpa) = F! (exp ( bko,1 + Zaz&) (1+ %a)) . (7)

g, i=1

We are then able to match the leading term of the inverse Fourier transform §~! and the top
degree term of the uniDR formula by mductlon on genus (Theorem 8.3). After restricting ! to

J; n XM, Jg n, the inverse transform §~! reduces to

§1 = (=17 - ch(PY)  7jtdY(Re) ™ : CH* (T, Q) — CH*(J2,,, Q)

where R is the sheaf of residues of logarithmic differentials on j;n. Let §° := ch(ﬁv) be, up to
sign, the leading term of F~!. We show that the image of F° of classes supported on boundary strata
of Jgn can be computed from §° for lower genera (Theorem 5.11). By Theorem 1.3, the uniDR
formula satisfies a genus recursion with respect to the top degree part. Combining the two recursive
structures via (7), we show that the contribution of the inverse Fourier transform of the class 7.,
does not contribute in codimension g and the contribution from td¥(R,)~! exactly matches with the
recursion formula in Theorem 1.3. Therefore, the codimension ¢ < g part of the image of monomials

of weight 1 divisors vanishes and we get

[30 (eXP <—b/€0,1 + Z%fi))] =(-1)7- mg(@ a) 0
=1 codim=g o

Pulling back both sides along the zero section e and applying (1) yields Theorem 1.1 when ¢ = 0.
For monomials with a positive exponent on ©, we use Theorem 1.4 to reduce to £ = 0.

1.8 Other degenerate abelian fibrations

Let A4 be the moduli space of principally polarized abelian varieties of dimension g and let A, C A’g
be the canonical partial compactification of rank 1 degenerations. Let 7 : Xg’ — A’g be the universal
family and let X° — A{ be the universal semi-abelian scheme. Let p: X7 x 4, Xy — Ay be the
multiplication map. By the work of Arinkin-Fedorov [7], the Poincaré line bundle extends to a line
bundle P on X; XA Xé U Xé XAy Xgo.

Theorem 1.5. There exists a unique maximal Cohen-Macaulay sheaf P on Xg’ XA Xé extending
P. Moreover, § := —® P : Db (X, 0 = Db (X, ;) induces a derived equivalence.

We prove Theorem 1.5 by resolving the indeterminacy of the multiplication map pu, following
the approach of Theorem 1.2. It gives a new derived equivalence which does not follow from [6].

We connect the partial Fourier transformation and the weight decomposition for semi-abelian
group schemes and compute the class of the unit section e inside X7.



Theorem 1.6. Let e : A’g — Xg" be the unit section. Then we have

g a—1
= [exp(@)- (15 gioa 3o CF)] L, e,

For a detailed explanation of notations, we refer to Section 9.5. Along the way, we provide a
. . . . ——tl -
new proof of the uniDR formula on the relative Jacobian over the treelike locus Mgtm C Mgn.

Conventions

We work over a field k of characteristic zero. All Chow groups are taken with Q-coefficients. All
monoids and log structures will always be fine and saturated (f.s.) in the sense of [39, 57]. For a
scheme X, let Dzoh(X ) denote the bounded derived category of coherent sheaves on X. Let Ky(X)
(resp. KY(X)) denote the Grothendieck group of coherent sheaves (resp. locally free sheaves). For a
morphism X — Y and Y’ — Y, we denote X|ys := X xy Y.
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2 Compactified Jacobians

2.1 Compactified Jacobian and logarithmic Picard group

Relative Jacobians of a family of prestable curves ([63, Definition OE6T]) can be compactified in
two distinct ways: through the compactified Jacobian, and via logarithmic Picard groups.

Let p: C' — B be a prestable curve of genus g equipped with a section. For b € B, let I';, denote
the dual graph of the prestable curve Cy. A stability condition € of degree d for p is a function

e: V(I = Q

for each geometric point b € B which has total degree d and is compatible with degenerations
(Section 1.2). A prestable curve C is called quasi-stable if the dualizing sheaf w¢ is nef and chains
of unstable components have length at most 1. A line bundle L on C' is admissible if L has degree 1
on each unstable component of C'. An admissible line bundle L on a quasi-stable curve C' is e-stable
(resp. e-semistable) if for every proper subcurve () C C C C with neither C nor its complement
consisting entirely of unstable components, we have
C

B(C.C) _

E(C,C°
() - (<) dex(Lle) < (9)e(€) + DEL),
where E(C,C°) is the number of intersection points of C' with the complement C¢ and €(C) is
the sum of the values of € over all irreducible components of C. A stability condition is called

nondegenerate if e-semi-stability equals e-stability.



For a stability condition €, a compactified Jacobian jec — B of p is a good moduli space
parametrizing e-semistable rank 1 torsion free sheaves ([16, 38]). When the stability € is clear from
context or the precise choice of e is irrelevant to the argument, we simply denote J¢ := Jg c- Let
JC — B be a relative Jacobian parametrizing multidegree 0 line bundles. Tensor product induces a
natural action

p:J%XBjE—)jEC. (8)

The compactlﬁed Jacobian has several desirable properties when the base B is Mgn For
nondegenerate €, Jc is a smooth Deligne-Mumford stack, the projection map 7 : J¢ c — Bis
representable, proper and flat ([38, Corollary 4.4]). When the family p has a section, rigidifying
along that section produces a universal sheaf on the universal curve C' — jec.

To describe the second compactification of relative Jacobians, we begin by recalling definitions
from logarithmic geometry. A log scheme X = (X, Mx) consists of a scheme X together with a
sheaf of commutative monoids My on the étale site of X together with a morphism a: Mx — Ox
with a‘l(’)} = O%. For a sheaf of monoids Mx, let M%? be the sheaf of abelian groups associated
with the Grothendieck group of Mx. For a log scheme B, we write LogSch/B the category of f.s.
log schemes over B. We refer to [39, 57] for the foundational concepts of logarithmic geometry.

The logarithmic Picard group, introduced by Molcho and Wise [51], offers a canonical compacti-
fication of the relative Jacobian within the framework of algebraic logarithmic stacks. Let B be a
logarithmic scheme which is log smooth, and let p : C'— B be a proper vertical log smooth curve.

Theorem 2.1 ([51]). Let LogPic. : (LogSch/B)° — (Grp) be the functor defined by
(B' = B) — {MgB/—torsor of bounded monodromy} .

Then LogPic is an algebraic logarithmic stack. The relative rigidification LogPic. is log smooth
with proper components, and forms a commutative group object over B.

For details on the notion of bounded monodromy, we refer to [51, Section 3.5]. In brief, it
amounts to an infinitesimal smoothability condition.

Compactified Jacobians serve as a “scheme-theoretic” birational model of the logarithmic Picard
group. In [51, Proposition 4.4.8] a natural morphism

Jo — LogPicq (9)

is constructed. While the logarithmic Picard stack is not representable by an algebraic stack, the
morphism (9) is a log modification by [1], which implies that the compactified Jacobian J¢ can be
interpreted as a representable, birational model of LogPic..*

2.2 Universal Picard stack and tautological classes

Tautological classes on the relative compactified Jacobian are derived from tautological classes
pulled back from the universal Picard stack. Let 9, ,, denote the moduli stack of prestable (not
necessarily stable) curves of genus g with n marked points, and let p : €, ,, — 9, ,, be the universal
curve together with sections z; : My, — €, for 1 <4 < n. The universal Picard stack

‘Bicg,n — Myn

4A morphism f : X — Y between algebraic logarithmic stacks is called a log modification if for any morphism
T — Y from a log scheme, fr : Xt — Yr is a log modification (in particular, proper, representable and birational).



is the relative Picard stack over M, ., as described in [8, Section 2|. It is a smooth algebraic stack
of locally of finite type over 9, , and decomposes into a disjoint union of connected components
Bic, ,, 4, indexed by d, the total degree of a line bundle. Under the natural boundary stratification,
Bicy 4 is an algebraic stack with a log structure.

The compactified Jacobian admits a morphism to the universal Picard stack. For n > 1, let
B = ﬂg,n and let jec — B denote the compactified Jacobian associated with a non-degenerate
stability condition e. We choose a universal rank 1 torsion-free sheaf F' — C. According to [25],
there exists a quasi-stable model

v:C%¥® - C

along with an admissible line bundle
L—C*#

such that Rv,L = F'. The pair (C® L) is referred to as the quasi-stable model. This quasi-stable
model, defined over J¢ induces a morphism

o Jo — Picy, (10)

rel

o.n De the relative rigidification

which is dependent on the chosen universal sheaf. For n > 1, let Bic
of Picy ,, = My . Then ¢ factors through p : jec — Pic

rel
g7n :

Lemma 2.2. For a nondegenerate stability condition €, the morphism (10) is smooth. Moreover @
is an open immersion.

Proof. Clearly ¢ is locally of finite presentation. Fibers of ¢ have constant dimension. Since 760 and
Bic, ,, are both smooth, we conclude that ¢ is flat by the miracle flatness lemma. Moreover, fibers
of ¢ are smooth, hence it is smooth. Since @ is a momonorphism, it is an open immersion. O

We define a natural notion of tautological ring for a compactified Jacobian by pulling back the
tautological ring of Pic, ,, via the morphism ¢ defined in (10):

R*(J¢) C CH*(J¢,Q) . (11)

In forthcoming work [10], the tautological ring of compactified Jacobians—and more generally, the
logarithmic Picard group—is studied in detail. In this paper, we focus on monomials of divisors.
Among the tautological classes of codimension 1, we highlight the following:

O = —%p*(cl(ﬁ)Q)7 ko1 = px(c1(w)er (L)), and & =z (c1(L)) .

We describe the boundary strata of the relative and compactified Jacobians when B = ngn.
For each prestable graph I' and multi-degree function ¢: V(I') — Z, let Bicy, denote the stack
parametrizing prestable curves C, of genus g(v) with n(v) markings for each vertex v € V(I),
together with a line bundle L on a prestable curve C obtained via the gluing map v : UUGV(F) C,—C
associated to I', such that the restriction v*L|c, has degree d(v). Then Bicp, admits morphisms

f,]3icr6 L) ‘Bicg’n
ql (12)
[Loev @) Bicgw) nw).s()



where the morphism jr, is proper, representable and ¢ is the morphism induced by the partial

1
normalization induced by the edge contraction data. The morphism ¢ is a GZL O_torsor. For a
quasi-stable graph I" with e-stable multidegree d, Jr; is given by the cartesian diagram

Jrs —— Jgn

L, o

. J .
Picr, e, Pic,
where the right vertical morphism is (10).

Lemma 2.3. Let 7 : Jgjn — ﬂg,n be the relative Jacobian. Let j : ﬂg_g,nw — Mg,n be
the gluing map identifying n + 2¢ — 1-th marking and n + 2i-th marking for 1 < ¢ < ¢. Let
q: Jgﬂﬂg_l o gg_e nt2¢ D€ the morphism given by the pullback of line bundles to partial
normalization. Then ¢ can be identified with

0 ~ 0
Ji”’mg—e,mﬂz = (Lnt1 ® L7\1/+2)X @@ (Lnt2e1 @ L7\1/+2€)X - Jgff,n+22 ‘

Proof. By partial normalization, we get a morphism Jg%n\m oz Jg%e ntoe Fibers of the
g—£,n )

morphism record the identification of the line bundle at n+2i —1 and n+2¢', L|,y2i—1 = L|npyo;. O

Lemma 2.4. Let I';, be the stable graph consisting of a single vertex of genus g — h with A loops
and let T, be the quasistable graph obtained by subdividing each edge of I';,. Then there exists a
nondegenerate stability condition € of degree d — h together with a map

—€p —€
Jg—h,n+2h — Jg,n
. . . —€n —€ . — —€
which identifies Jg',h,nﬁh = Jgp With Jpr = J o

Proof. We define a nondegenerate stability condition ¢ for Mg—h,n+2h of degree d — h as follows.
Suppose I is a stable graph of genus g — h with n + 2h legs. Then gluing the last h pairs of legs gives
a stable graph of genus g with n legs, so the stability condition € can be applied to give numbers
e(v) for v € V(I') (with sum d). We then define ¢, : V(I') — Q by

1
en(v) = €(v) — §(number of i-th legs n 4+ 1 <1i < n + 2h attached to v). (14)

Since € is a stability condition, (14) is a stability condition for Mg_h,mrgh of degree d — h. When ¢
is nondegenerate, then ¢ is also nondegenerate by [38, Definition 5.1].

Over J," j, .+ on, there exists a morphism of curves v : Co hmyon = Cry where C°, o) is the
universal quasi-stable curve and v is the morphism gluing the (n + 2i — 1)-th to the (n + 2i)-th
marking for 1 < 4 < h. For the universal line bundle £ on C* the pushforward v, L is a

g—h,n+2h>
rank 1 torsion free sheaf. The universal quasi-stable model of (C;li hnions V<L) defines the desired
morphism j;}Lh,n+2h — j;n L]

We end with the connection between the universal Picard stack and the logarithmic Picard
group. For the universal Picard stack Bic, ,, over M, and the logarithmic Picard group LogPic, ,
over Mg, in [51, Proposition 4.4.8] a natural morphism

Pic, ,, — LogPic, , (15)

is constructed. When B = M, ,,, the morphism (9) is in fact defined by the composition J,, —
‘Bic, , — LogPic ,,.

10



3 Extending the Poincaré line bundle

3.1 Poincaré line bundle

Let p: C — B be a proper log smooth curve with a section. Let ¢; and e2 be two nondegenerate
stability conditions for p. For the compactified Jacobian J 52 — B, let

JG CIg (16)

be the open substack given by the locus of line bundles. For the compactified Jacobian jg, choose
the universal sheaf F on the universal curve C which is trivialized along the section. Let C% — J
be the universal quasi-stable curve and £ be the universal line bundle on C'%.

Definition 3.1. Let p: C¥® — jél x g J& be the pullback of the universal quasi-stable curve, and
L1 (resp. L£3) be the universal line bundle of J& (resp. J£?). The Poincare line bundle P is defined
by

P = <£1,£2> € PiC(jC XB JC) s

where (—, —) is the Deligne pairing [21]. If we wish to emphasize the universal curve, we may write
<_a _>C'

Definition 3.1 coincides with the definition from [5, 43] because we only consider families of
prestable curves. The Poincaré line bundle in general depends on the choices of universal line
bundles, but if both stability conditions €7, €5 are of degree zero, it is independent of the choices.
We often omit stability conditions in our notation and write Jo x g Jo := 721 X B Jé?.

Similarly, the Poincaré line bundle exists on Jo X g J¢. Since the two line bundles coincide on
the intersection, the line bundle P exists on Jo x5 Jo U Jo x5 Jo. Let

L:JoxgJoUJoxgdo— Jo xgJc (17)

be the open embedding.
By Grothendieck-Riemann-Roch (21, (6.6.1)]), the first Chern class of the Deligne pairing of
two line bundles can be written as

c1({L1, L2)) = px(c1(L1)er (L)) - (18)

3.2 Birational model of Jo x5 Jo

In this section, we set B = Mg,w Let €1,e2 be two nondegenerate stability conditions for B.
Throughout this section, we abbreviate notation and write Jo xpg J¢ := jeé XpB 7663. On Jo xpJo
the Deligne pairing does not extend. Using logarithmic geometry, we construct a birational model
of Jo x Jo to resolve the indeterminacy of the Deligne pairing (18).

A map of log schemes (or algebraic stacks) is strict if it induces an isomorphism on log structures.
We assume our log schemes come with a tropicalization map

t:B— Ap (19)

to some Artin fan Apg, and write ¥p for the corresponding cone stack, see [17]. The tropicalization
map is strict. Moreover, for any logarithmic morphism f : X — S between log schemes, there exists
an induced morphism Ax — Ag between the corresponding Artin fans.

A log alteration of a log scheme B is a map Ay X 4, B — B given by the base change of a
proper, Deligne-Mumford type and birational logarithmic morphism Ay — Ap. A log alteration is

11



called a log modification if it’s representable, and a root if it is bijective on geometric points. Under
the correspondence Ap <> ¥, log modifications correspond to subdivisions of ¥z, and roots to the
choice of a finite index integral substructure of the integral structure of Xp.

Definition 3.2. A log alteration B’ — B is called small if the map A — Ap induces an
isomorphism between the groups of Weil divisors of Ap and Ap:.

Let Q denote the stack of quasi-stable curves. The stack £ is algebraic because it is an open
substack of 9, ,,. By restriction, Q carries a natural logarithmic structure.

Definition 3.3. We define a log stack Q) : (LogSch/B)° — (Grp) by
Q@S = B) :={(C, = 8,Cy — 5,C — C))}
where
e C; — S are two quasi-stable models of Cs/S,
e C— C; is a quasi-stable model such that C — S remains a log smooth curve, and

e C is the minimal common log modification of the Cj, i.e.
6 = Cl Xfcsv CQ.

There is a natural projection

0 5 axpN

by sending _
(Cl — S,CQ — S,C — Cl) — (Cl/S,CQ/S) .

We show that Q) is given by a modification of Q x5 Q.
Proposition 3.4. The projection Q) — Q xg Q is a log modification.

Proof. We argue tropically. Let 3¢ denote the stack over rational polyhedral cones that parametrizes,
over a cone o, a quasi-stable graph I with stabilization I, where edge lengths are metrized by
M, := Hom(o,N). It is straightforward to see that ¥q is a tropicalization of Q. We define ¥
as the stack that parametrizes two quasi-stable models I'1,I's of I over ¢ together with a minimal
common quasi-stable model I, all metrized over . Then we have an isomorphism:

2(2) = EQ@) X(EQXEBEQ) (Q XB Q)v

which indicates that it suffices to verify that Yy — Y x5, Xq is a subdivision.

Let I'1,I's be two quasistable models of I' metrized by M,. Suppose e is an edge of I' that is
subdivided in both I'y and I's. The length of the edge e is an element £, € M,. Since the edge is
subdivided in both I'1, 'y, there exist elements ¢ ,¢” i = 1,2 such that

€;77e;?
_ 1/
b=t +0" .

We orient £, , ¢ so that the terminal point of £, and the initial point of ¢ is the quasistable

vertex. Similarly, ¢,_,¢” are oriented “the same way”, meaning the initial point of 66/2 coincides

€927 Vey
with the initial point of £, ,» and its terminal point is the quasistable vertex.

12



Combinatorially, the only possible minimal quasistable model of I'j, I'y is given by the common
subdivision of the I';, i.e. the fiber product:

le“l XFFQ.

This model, however, is not metrized over M,: put otherwise, the cone complex associated to the
fiber product fails to be flat over o on the locus where the functions £, and £, become equal.
Nevertheless, there is a minimal subdivision of ¢ — the subdivision along the hyperplane

r
be, =L,

for every edge e subdivided in both I'y,T's — over which [ is defined. Consequently, in the universal
case, it follows that the map Y — X x5, Xg is the subdivision along the hyperplanes £, — £,
where e ranges through all the edges of I" that are subdivided in both I'y and I's. O

Remark 3.5. Let C7 and Cy be two universal curves on Q x g Q with the same stabilization C.
The f.s. fiber product Cy xfg Cy — Q xp 9 is not flat, so it is not a curve. By the semistable
reduction theorem ([46]), there exists a canonical log alteration Q' of Q x g Q and C’ of C; x5 Oy
such that C" — Q' becomes a curve. Proposition 3.4 provides an alternative perspective: Q) is
exactly ', and further alteration of C Xsz Cy is unnecessary as it is already flat over Q(2).

Corollary 3.6. The stack Q® is smooth and log smooth. Furthermore, the exceptional locus of
0 does not contain any divisors.

Proof. Cones of ¥ p correspond to stable graphs I'; for such a graph, with set of edges E(I"), the
associated cone is
BT
or = RZ(() )
with its natural integral structure. Similarily, cones of Yo correspond to quasistable graphs IV, with
corresponding cone
B
orr = RZ(() ).
Let I be a quasistable graph with stabilization I". For each edge e of T, there is either exactly one
or exactly two edges of I that map to e. We write E*(I") for the edges of the first kind, and E*(T")
for the edges of the second kind. If we denote the edges of I that map to e € E5(T") by ¢, e”, then

we have
E(I") = E“(I") U {e’,e”}.
ecEs(T)
The map Yo — Xp is defined as follows: on the cone corresponding to I, with stabilization I', the

map
E(T)

or = RE, (n)

/ " Ev
XecEs(I) Rzoe X Rzoe — Or = RZO XeeEs(I) Rzoe

is the product of the identity on the ng(r) factor with the addition maps

Rzoel X Rzoeﬂ — Rzoe s (E/ E”) — fle + fg .

ere

Similarily, cones of the fiber product ¥ X5, Xq are indexed by pairs of quasistable graphs
I'1, 'y with mutual stabilization I'. Keeping the notation above, we further split the edges of I' as

E“(T)u E**Y2(I') U E5752(T)

where
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o E51V52(T) are the edges of I' subdivided in either I'; or 'y but not both, and
o E51752(T") are the edges subdivided in both T'; and Ts.

From the description of the maps or, — or, it follows that the cone corresponding to I'y, 'z, which
is the fiber product or, X, or,, is explicitly

Ev(T
RS W x I Rox [I R xz., R

ecEs1Vs2 (F) ecEs1Ms2 (F)

If we label the two edges in I'; subdividing e € E51"%2(T") by e/, e/, as we’ve done above, the
corresponding cone RQZO XRsq RQZO is explicitly

{(6/ g/l El Ell ) . g/el +€/6/Z — ee}

€17 7eypr ez’ ez

This cone is responsible for an “xy = zw” singularity in Q xp Q, and is subdivided in X4 into
two unimodular simplices, along the hyperplane

'’
be, =L, -

We refer to (21) for the associated tropical picture. Hence, each cone in X2 is smooth. Furthermore,
the subdivision is along hyperplanes, which means no additional divisors are introduced. This proves
the corollary. ]

We return to the compactified Jacobian J¢ and the morphism ¢ : Jo — Q induced by (10).

Definition 3.7. The stack j(g) is defined by the fiber diagram

S )

il l (20)

jc XBjC ﬂ>5Q><B)Q.

The log modification f : 7(02) — Jc xp Jc is the one appears in Theorem 1.2. The below
horizontal arrow is strict by Lemma 2.2. Therefore the diagram (20) is an f.s. fiber diagram. By

j(2)

Proposition 3.4, the morphism f : J' — Jo xp J¢ is a log modification.

Recall that a log stack X is called log smooth if the morphism X — Y x to a tropicalization is
smooth.

Proof of Theorem 1.2 (a). The morphism ¢ x ¢ : Jo xp Jo — Q xp Q is smooth, strict and log
smooth by Lemma 2.2. Since the diagram (20) is Cartesian, the claim follows from Corollary 3.6. [

A morphism f: X — Y between fine log schemes is called integral if for any geometric point
x € X, the induced morphism between commutative monoids My () — Mx , is integral.

Definition 3.8. A log family is a log smooth, integral, saturated morphism f : X — S between log
schemes. A log family is semistable if in addition X, S are smooth and log smooth.

Proposition 3.9. Let f: j(cz) — Jc x5 Jo be the log modification in Definition 3.7.
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(a) The two projections 7y, ms : jg) — Jo are semistable. Moreover, the projection 7 : jg) — B
is also semistable.

(b) For any geometric point = of Jo xpg Jo, f~!(x) is isomorphic to P! x .- x P

Proof. (a) Since J¢ and jg) are smooth, it suffices to show that the map is integral with reduced
fibers. This conclusion follows directly from Corollary 3.6 and its proof. Specifically, under either
projection 7;, the two cones arising from the subdivision of each square
{Zélvﬁlellvglegaggg : elel + Elc!l = E:az + Elelg}

along ¢, = (,, map surjectively onto their images in g, with their integral structures likewise
surjecting onto the corresponding images. The second assertion follows from the first because
Jco — B is semistable.

(b) This result again follows from the proof of Corollary 3.6, as the map Y@ — ¥q X5, Xg is
a product of the subdivisions along £, = ¢,,. The exceptional fibers arising from these subdivisions
are product of Ps, ensuring the desired structure. O

A compactified abelian fibration A — B is a log alteration of a log abelian scheme LogAb — B
which is of Deligne-Mumford type over B. For the definition of log abelian schemes, we refer to [37].

Proposition 3.10. 7 : j(cz) — B is a compactified abelian fibration.

Proof. Let LogPic denote the logarithmic Picard group as introduced in 2.1. The map 7 factors as

7(5) — LogPicy xp LogPicc — B,
where the first map is a log modification, and the second map is a log abelian scheme by [51,
Theorem 4.15.7]. Therefore 7 is a compactified abelian fibration. O

3.3 Direct images of line bundles under hyperplane subdivisions

We first consider the local situation. Let X be an affine toric variety. We write N, M for the
character and cocharacter lattice of its torus respectively, and we write X x for its fan, which is a
rational polyhedral cone in Ng. To simplify the presentation, we assume in the rest of this subsection
that X x is full dimensional in Ng.?

Definition 3.11. A toric blowup g : X — X is called a subdivision by a hyperplane if it is the
blowup corresponding to the subdivision of X x by a hyperplane: there is a u € M and ¥ ¢ is the
union of the two cones oy := Yy N{v € Ng : u(v) > 0} and 0. = Xx N{v € Ng : u(v) < 0}.
Moreover, a subdivision by a hyperplane is called saturated if g : X — X has reduced fibers.

A subdivision by a hyperplane is, equivalently, the domains of linearity of some convex (down)
piecewise linear function ¢ whose bend locus is the hyperplane u = 0. In terms of ¢, the subdivision
g : X — X has reduced fibers if and only if the value of ¢(v) is 0 or £1 on the primitive vector of
every ray of ¥y — see the discussion in [51, Section 4.4].

5The assumption can be safely omitted, as otherwise X splits as a product X’ x T of a toric variety X’ that
satisfies this hypothesis with a torus T', and any construction C'(X) we perform on X in this subsection will also split
as C(X') x T.
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Example 3.12. Our primary example of interest is the Atiyah flop for X = Spec C[z,y, 2, w]/(zy —
zw). The fan ¥ ¢ := X of X is the cone over a square II subdivided into two unimodular triangles:

w1 = (07171) w11 = (]-a]-a]-)
€1

€2
woo = (07 07 1) w10 = (17 07 1)

(21)
These triangles are the domains of linearity of the piecewise linear function ¢ := min (eq, e2).

The fibers of a saturated subdivision by a hyperplane are points, except for the fiber over the
fixed point of X, which is a P!. We refer to this P! as the exceptional fiber. If we translate ¢ by
a linear function so that its values are 0 on the separating hyperplane, ¢ is naturally an element
of u N M, which is the cocharacter lattice of the exceptional P!. If ¢ is saturated, it becomes a
generator of Pic(P!).

Lemma 3.13. Let g : X > Xbea saturated subdivision by a hyperplane with the exceptional
fiber P! — X. Then the restriction map Pic(X) — Pic(P!) is an isomorphism.

Proof. The Picard group of X is isomorphic to the quotient of the group of piecewise linear functions
on the fan ¥ := X by the group of linear functions,

Pic(X) = PL(Z)/M

A piecewise linear function on Y is given by a pair of vectors ui,us € M, such that u; = uy along
the separating hyperplane {u = 0}. Translating by wug, the piecewise linear function can be uniquely
represented by the function 0, u; — uo. But uy — ug is an element of ut N M which is isomorphic to
Z and naturally identified with Pic(P!). O

In fact, when g is saturated, the convex piecewise linear function ¢ when normalized to be 0
along one of the cones o4 or o_ must have value —1 along the primitive vectors of the rays of the

other cone that do not belong to the separating hyperplane, i.e. it corresponds to the generator
O(—1) of Pic(P!), i.e. Pic(P!) = Zg.

Proposition 3.14. Let X be an affine toric variety and let g : X = X be a separated subdivision
by a hyperplane. If L is a line bundle on X whose restriction to P! is Op1(m) for some m > —1,
then we have H*(X, L) = 0 for i > 1. Moreover, we have R'g,L = 0 for all i > 0.

Proof. Let us write X := X, Y = ¥, and recall that there is a vector u € M such that Y is the
union of the two cones

oy ={veX:(uv)>0}oo={veX: (uv) <0}

meeting along the separating hyperplane {u = 0}. They are the domains of linearity of the convex
down function ¢, which we normalize to be 0 on o_. Furthermore, the supports of 3 and 3 are the
same, and we may harmlessly identify them with ¥ itself.

By Lemma 3.13, the line bundle L corresponds to the piecewise function ¢,, := m - ¢ for m < 1.
For w € M, set

Zw={veX: (wv) <on)}
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where Y is the support of fl, or, equivalently, the fan of X. As in® [28, Section 3.5], we have

H'(X,L)= P H(S, % - Zy).
weM

We describe the topology of 3 — Z,,. Since the origin v = 0 is always contained in Z,,, the
complement of Z,, deformation retracts onto its intersection with the polytopal complex obtained by
slicing Y at “height 1”7, i.e. with the intersection of Y with the level set of a generic linear function
L : ¥ — R>g that takes each ray of ¥ to a positive number. We denote this polytopal complex
by II = YN L=1(1). The possible topological types of the sets Il — Z,, are highly constrained.
For example, when g is the Atiyah flop, 11 is a square, and the possible topological types depend
on whether w dominates ¢,, or not on the vertices of II. Degenerate cases are allowed, where a
two-dimensional cell collapses to a lower-dimensional boundary cell. We illustrate the possible
topological types below, with the regions Z,, N II highlighted in red:

> < > >

IN
\%
IA
\%

< > < > < > >

IN

In general, for m < 0, the function m¢ is convex up, and hence the sets
Y —Zy={veX:(wv)>dnv)}

are convex. In the case m =1, ¥ — Z,, is not necessarily convex, but its intersection with either piece
IIL =IINo4 is convex, as it is the intersection of a polyhedron with a half-space. Furthermore, the
intersection of

(E=Zy) NIy NIl =(X—Z,)N{u=0}NII

is the set
{velln{u=0}: (w,v) >0}

which is convex and connected (albeit perhaps empty). Therefore, in any case, the complement
of Z,, is contractible. Furthermore, it is connected unless Z,, contains the separating hyperplane
{u = 0}, in which case it has exactly two components.

From the long exact sequence of relative cohomology

0—— HY(Y, Y- Z,) — HYS)=C —— HY(Y = Z,) —— HY(S,% - Z,) —— 0,

we find that HY(X,¥ — Z,) is 0 for all i > 2, and 0 for i = 1 unless the complement of Z,, has two
components, in which case

HY(%, % - Z,)=C.

Now, let w be a character for which Z,, contains the separating hyperplane {u = 0} (which can only
happen for m = 1, as otherwise we’ve seen that ¥ — Z,, is convex). By our normalization hypothesis
on ¢ we have ¢ =0 on o_ and ¢ < 0 on o,. This means that w is

5We use the opposite convention regarding the sign of the Weil divisor associated to a piecewise linear function,
hence the reverse inequalities.
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e > () on some ray of o_
e < 0 on the separating hyperplane {u = 0}.
e >¢gonoy.

Let v be the primitive vector along a ray of o on which ¢(v) # 0. By the hypothesis that the
subdivision is saturated, ¢(v) = —1. Now, the linear function w has negative slope in the direction
connecting the separating hyperplane with v, as it has to rise away from the separating hyperplane
towards o_. But w also takes integral values on integral points, so if its value is < 0 along the
separating hyperplane, it must be < —1 along v. Therefore, for m = 1, it is impossible to find such
aw.

Therefore, if m < 1, for any w, ¥ — Z,, is contractible and connected. From the long exact
sequence, it follows that H*(X, L) = 0 for all i > 0.

For the second claim, since X is affine, Grothendieck’s spectral sequence gives H(X, Rig,L)
H Z()Nf ,L). We have just seen that this group vanishes for i > 0. Since R’g,L is a coherent sheaf on
the affine variety X, hence determined by its global sections, it also vanishes for i > 0. O

~

Now, we discuss the global situation. Let f : Y — X be a log modification. Generalizing
Definition 3.11, we say that f is a saturated subdivision by hyperplanes if it is étale locally pulled
back from a saturated subdivision by hyperplanes of toric varieties.

Proposition 3.15. Let f : Y — X be a a saturated subdivision by hyperplanes between log smooth
varieties, and let L be a line bundle on Y. Assume that the restriction of L to any fiber of f has
vanishing higher cohomology. Then we have Rf,L =2 f.L.

Proof. We prove the higher direct images R’ f, L vanish for all i > 0. By Krull’s intersection theorem,
the statement can be checked formally locally on X, so we can assume X is the spectrum of a
complete Noetherian local ring. Since X is log smooth, and since Y is a log blowup of X, we have a
Cartesian diagram

Y — Z

b

Xtz
with Z a toric variety, g a toric blowup — which by hypothesis must be a saturated subdivision
along a hyperplane —, and the map p étale. By [51, Lemma 4.4.12.2], the Picard group of Y and
the Picard group of Z are isomorphic, and both coincide with the Picard group of an exceptional
P!. We may thus identify L with a line bundle on Z. By Proposition 3.14, since the cohomology
of L vanishes on the fibers of f, it vanishes on the exceptional fibers of g as well. Thus we have
R'g,L =0 for i > 0. Since X and Z are formally locally isomorphic, we have

R'f.L = (Rig*L)@ =0,i>0,

which gives the result. O
For our purposes, we need the following strengthening of the previous result.

Proposition 3.16. Let f : Y — X be a log modification between log smooth varieties which is
locally the pullback of a product of saturated subdivisions by hyperplanes. Let L be a line bundle on
Y such that for each closed point z € X, Hi(f_l(m),L|f71(x)) =0 forall ¢ > 0. Then Rf.L = f,L.

Proof. By the same argument in Proposition 3.15, we reduce to the toric case. Then the result
follows by combining Proposition 3.15 with the Kiinneth formula. O
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3.4 Proof of Theorem 1.2

We show that the canonical extension of the Poincaré line bundle on the birational model constructed
in Section 3.2 provides a desingularization of Arinkin’s kernel ([6]). In contrast to Arinkin’s approach,
our construction offers a direct description of the kernel, which will be a crucial input in Section 5.

The notion of Cohen-Macaulay sheaves can be expressed in terms of the dualizing complex.
Denote by Dgoh(X ) the bounded derived category of coherent sheaves on X, and let w$ € ch’oh(X )
be a dualizing complex for X. We normalize w$ so that its stalk at a generic point of X has nontrivial
cohomology only in degree 0. When X is Gorenstein, the dualizing complex is an invertible sheaf.
Consider the duality functor

D : DLy (X) = DLy (X), € = RHomo, (€, wk).

coh coh

A coherent sheaf £ on X is called Cohen-Macaulay of codimension d if and only if
R(DE) =0,i#d. (22)

A Cohen-Macaulay sheaf of codimension zero is called mazimal. The following extension property
will be used frequently ([31, Theorem 5.10.5]).

Lemma 3.17. Let F be a maximal Cohen-Macaulay sheaf on X and let Z C X be a closed
subscheme with codimension > 2. Let j: X \ Z — X be an open embedding. Then the canonical
morphism F — j,j*F is an isomorphism.

We go back to the construction in Section 3.2. By Theorem 1.2 (a), the codimension of the open
embedding (17) is two and the total space j(g) is smooth. Consequently, the Poincare line bundle

P on Jo xg JoUJc xp Jo extends to the unique line bundle:
P e Pic(75). (23)

We call P the extended Poincaré line bundle.

Before presenting the proof of Theorem 1.2, we explain the connection to Arinkin’s work. By
Arinkin [6] (see also [44]), the Poincaré line bundle P admits a unique maximal Cohen-Macaulay
extension:

Pe Coh(jc X B jc) . (24)

This extension is obtained in loc.cit. from flat descent of a maximal Cohen-Macaulay sheaf on the
isotropic Hilbert scheme of points. Theorem 1.2 can be thought of as a desingularization of Arinkin’s
kernel.

Corollary 3.18. Let P be the unique extension of the Poincaré line bundle (23) and let P be the
maximal Cohen-Macaulay sheaf (24). Then we have

Rf*ﬁngDb (jc XBjC).

coh

Proof. By Theorem 1.2, f*ﬁ =R f*ﬁ is a maximal Cohen-Macaulay sheaf which restricts to P on
Jo xpJoUJe xp Jo. By Theorem 1.2 and Lemma 3.17, we have f,P = P. O

In the remainder of this section, we prove Theorem 1.2 (c). We begin by providing a modular

description of P. By pulling back the universal curve over [31C) along the morphism 72) — 0@ in
(20), we obtain a semi-stable curve:

G2 (25)
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Figure 1: The blowup of P! x P! at (nq,0), (n2,00) and its torus invariant divisors.

Proposition 3.19. Let C1,C5 be the two universal quasi-stable curves over Jo xg Jc and L1, Lo
be the two universal line bundles on C7, Cs. Let C — 7(02) be the semi-stable curve (25). Then the

unique extension (23) has the form P = (£4|5, L2|5)-

Proof. By Theorem 1.2 @) and Lemma 3.17, it is enough to show that P restricts to the Poincare
line bundle P on Jo xg Jo U Jo Xp Jo which is immediate from Definition 3.1. O

Theorem 1.2 (b) is the consequence of Proposition 3.19.

Proof of Theorem 1.2 (c). A geometric log point # € Jgo xp J¢ corresponds to a quadruple
(C1,L1,C4, Ly) of two quasistable log curves with stabilization C, and stable line bundles L;

on C;. By Proposition 3.9 (b), the fiber of 79 over z is a product of Ps, one for each edge e of the
dual graph of C' that is subdivided simultaneously in the dual graphs of both C'; and Cs. It will be
clear from our argument that we may work one such edge at a time, so we assume that one edge e
has been subdivided, and f~!(z) = P!. We note that the curves C;,Cy are not isomorphic as log
curves over x, but their underlying schemes are isomorphic, obtained by replacing the node of C
corresponding to e by a P!. We may thus write

Ci=0Cy = C’ U{nl,nz} P!

with n1,no two nodes, and P! the unique unstable component. Since Ci,Cy are curves over a
geometric point, we can represent each line bundle L; as a divisor

D+ p;

where D/ is supported on the smooth locus of C’ and p; is a smooth point of the unstable P'. By
construction, the curve C restricted over f~Y(z) = P! is the blowup of C; x P! at (n1,0), (nz, 00),
where n1,n9 are the two nodes of the exceptional P! in C;. Now, the pullbacks of D; and of p;
remain in the smooth locus C’ x P! and its complement respectively. Therefore, D! stay disjoint
from the p; and we have

(Dj,pj) =0

for i, j = 1,2. Similarily, (D}, D)) can be calculated inside any proper subvariety of C that contains
the smooth locus of €’ x P!, for example inside C’ x P!, while (p;,ps) can be calculated inside the
complement of the smooth locus of ¢’ x P!, which is the blowup BI(P! x P!) of P! x P! at (ny,0)
and (ng,00). Since C' x P! and D}, D} are pulled back from a point, (D, D) = 0.
On the other hand,
Pic(BI(P' x P')) = 74
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is generated by the classes of two horizontal divisors Hy, Ho, and four vertical divisors Vy, Voo, Eo, Fso
over 0 and oo with relations

Hy+Ey=Hs+ Eoo, Vo + By = Voo + B -
Up to renaming, we may arrange so that
H-Ex=Hy V=0.

In our naming convention, we are thinking of H; as the strict transform of n; x P!, Hy as the
strict transform of no x P2, and of Ey, Eo as the exceptional divisors of the blowup C of O x PL.
By construction, p; has relative degree 1 over P! and intersects Vj, Vo transversely, while ps has
relative degree 1 and intersects Ep, En transversely. A simple calculation in Pic(BI(P! x P')) shows
that these properties uniquely characterize p; as the line bundle equivalent to Hy + E, while po as
Hi 4+ V. Then, we have

<H2 + Eo, Hy + Voo> = f*(EOO : VOO) - [OO]

which has degree 1 on P!,
In general, we conclude that

(Lilg: L2lg) lp-1(2) = Opr (1) K-+ K Opa (1), (26)

where we identified f~!(z) 2 P! x --- x P! using Proposition 3.9.

We may now prove R'f,P =0 for i > 0. By Proposition 3.16, it is enough to show that for any
z € Jo xp Jo, we have Hi(f~Y(z),P) =0 for all i > 0. But this follows from (26).

We show that f,P is a Cohen-Macaulay sheaf using the cohomological criteria (22). By the
Grothendieck duality along f (see, e.g., [55]), we have the equivalence Rf, o D7g> =Dy, 7.0 RS+

Since f is birational, there is no degree shift in this equivalence. Applying this and (a), we have
D(f.P) = D(Rf.P) = Rf.D(P).

The total space j(g) is smooth by Theorem 1.2 (a), and hence we can express D(P) = PY @ W=(2)-
C
The dualizing line bundle W(2) restricts trivially to each contracted P! by the adjunction formula.
C

Using the Kiinneth formula, for any = € Jo xp J¢, we have

H(f 7 (2),PY @ w@) = HI(P' x -+ x PLPY) =0,i >0,
C

where the vanishing follows because PV has degree —1 on each P! by (26). Therefore, by Proposition
3.16, the complex IDL( fxP) is a coherent sheaf. By (22), the pushforward f,P is a maximal Cohen-
Macaulay sheaf on Jo x5 Jo. O

4 Todd class of a residue sheaf

4.1 Residue sheaf of a semistable morphism

We recall the local structure of semistable morphisms (Definition 3.8). Let f : X — S be a semistable
morphism with dim X = n,dim .S = [. Etale locally on the domain, there exists non-negative integers
n and [, a partition A of n into [ parts n;, and a chart for f of the form

l

l
HA"" — HAI, given by t; = H Ta (27)

i=1 i=1 aEn;
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by [15, Theorem 16] and the proof therein.
For a semistable morphism f : X — S, the sequence

0— f*Qy — Q% = QF =0 (28)

is exact. Consequently, the Todd class of the virtual tangent bundle associated with f is the dual
of the Todd class of Ql For a morphism f : X — S between log schemes, one can associate the

logarithmic cotangent Sheaf o) f1og ([39; (1.7)]). When f is log smooth, the logarithmic cotangent
sheaf Q! Flog 18 locally free.

Lemma 4.1. Let f: X — S be a semistable morphism. Then the sequence
0= Q= Q1o — Q10 /2 = 0 (29)
is exact. In this case, we call Ry := Qf log/Q} the residue sheaf of f.

Proof. By the definition of Q}Jog, there exists a canonical morphism Q} — Q}’log. The injectivity of

the above morphism can be checked étale locally. On each étale local chart, it follows from (27). O

We use the tropicalization map (19) for log schemes. For a morphism f : X — S between log
schemes, consider the diagram

X%AX *>.AX

SoF L

S —t — Ag

where the middle square is the fiber diagram. We call Ax[S] the relative Artin fan.

Lemma 4.2. Let f : X — S be a semistable morphism. In the diagram (30), the natural morphism
qﬁ}Rg — Ry is an isomorphism.

Proof. Since f is flat ([39, Corollary 4.5]) and log smooth, the morphism ¢y is strict and smooth.
Thus, the natural morphism Ql — Q}z}f log is an isomorphism and the result follows from Lemma
4.1. O

We work with piecewise linear and piecewise polynomial functions on smooth and log smooth
schemes; see [34, Section 2.5]. For an algebraic log stack X, a (strict) piecewise linear function
on X is a global section H(X, M%?) ®z Q and a (strict) piecewise polynomial on X is a global
section H(X, Sym@ﬂ%?). For o € H(X, M%), the O%-torsor O%(«) is defined as the preimage of
o under the natural map M5’ — M%?. The associated line bundle, denoted by Ox (), is obtained
by gluing along the infinity section.

We now proceed to calculate the Todd class of the residue sheaf of a semistable morphism. From
Lemma 4.2, it follows that to compute Ry, it is sufficient to perform the calculation for the map
Ax — Ag. By [49, Theorem 3.3.1], we have a graded ring isomorphism

H*(Ax) = PP(2x),

which reflects the fact that CH*(Ax ) satisfies étale descent. As a consequence, the calculation of
the Todd class can be carried out stratum by stratum.
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For a Chern root x, we denote by td(x) the associated Todd class and the dual of the Todd class

by
°°B

td"(z) :=

where By, is the k-th Bernoulli number.

Lemma 4.3. Let n,l be positive integers, and A be a partition of n into [ parts n;. Consider the
map f : A” — A! induced by the semistable map A" — Al defined according to the partition A, as
described in (27). The Todd class of the residue sheaf of f is expressed as

I
(td"(Ry))~ H O‘Gn’ 3 ; € PP(Xpn)

Z:]. OéEnl
where §,, is the piecewise linear function corresponding to the normal bundle of the a-th coordinate
hyperplane.

Proof. We begin by analyzing the case [ = 1. Let D denote the origin in A', and D; denote the
coordinate axes in A™. Denote by ¢, d; the Chern classes of their respective normal bundles. These
classes correspond to piecewise linear functions, where §; has slope 1 along the ray associated with
D; and slope 0 elsewhere. The pullback relationship for f gives:

fro=> 4.
i
By (28) and Lemma 4.1, we get a short exact sequence

0—>f*(’)p—>@(’)pi —R;—0.
=1

Therefore, we deduce:

td(®Op,)  TTtdY(5;)!
td(f*Op) — td" (3 6;)
where the last equality follows from the usual exact sequence 0 — O(—D) — O — Op — 0 for
Cartier divisors D. For the general case, the map f decomposes as a product of [ maps, f; : A — AL
Thus, the Todd class of the relative cotangent bundle td(Ry) is given as the product of the formula
for the special case (31) applied to each factor. O

td(Ry) = (31)

Now we state the general formula for the Todd class of the residue sheaf. To do so, we first
introduce some notation (see [59, Section 4]). For a cone o € Xg, let j, : S; — S denote the
corresponding monodromy torsor. Similarly, for a cone in Xy, corresponding to a cell ¢ in the
generic fiber of X x — g, let i, : X, — X denote the corresponding monodromy torsor, and let

fe: Xe— S,

the induced map. For a ray p in X5 or ¥ x, we write ¢, for the piecewise linear function with slope
1 along p and 0 along the other rays; we identify 6, implicitly with its image in the Chow ring of S
or X, which is the first Chern class of the normal bundle of D, in S or X. For a cone o, we write
o(1) for its set of rays.
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To express the Todd class in terms of the strata algebra, we proceed as follows. Given a
polynomial P, on a cone ¢ of X x, we define prin.[P.] to be the sum of terms in P. which are formally

divisible by
Oc 1= H Or .
rec(l)

where ¢(1) is the set of rays in the cone ¢. Then, we define:

B prin,[P.]

P, = B

Additionally, we write G for the monodromy group of c. Finally, write X : ¥x — Xg for the
induced map of cone stacks.

Proposition 4.4. Let f: X — S be a semistable morphism. The Todd class of the residue sheaf of
f is given by

Vi o1 i) e,z r)=p td(6r)
W®y™ = 5 1l (s,

cEXx pGEf(c)(l) c

Proof. We prove the formula in the ring of piecewise polynomials:

_ Hrec 1),X¢(r)= td(d?‘)
pET;(e)(1) P .

€ PP(Sx). (32)

Here, (—). indicates that the piecewise polynomial function is determined on the cone ¢ of ¥ x by
truncating the power series

PEL(0)(1)

at codimension greater than dim X. It is implicitly understood that these functions must agree on
intersections of cones ¢ N ¢/. The formula agrees with Lemma 4.3 on each cone because

Sp=> 0.

TP

This ensures that the Todd class satisfies the statement of the proposition etale locally on X. But
the formula (32) is invariant under automorphisms of RZ, and, by direct computation, the formula
defined on each cone agrees with its restriction to any face, R’;O C R%,. Since piecewise polynomials
satisfy étale local descent [49], the formula descends to PP(Xx).

Once the formula (32) is established in the ring of piecewise polynomials, translating it into a
statement about normally decorated strata classes becomes straightforward, see [34, Lemma 40]. [

Example 4.5. For the morphism A2 — A! corresponding to (z,y) — 2y, the formula above reduces
to Mumford’s formula for the Todd class of a node ([54, Section 5]).

4.2 Residue sheaf for compactified Jacobians

The Todd class of R, for compactified Jacobians can be expressed in terms of tautological classes.
Let B := My, and 7 : J,4, — Mg, be a relative compactified Jacobian for some non-degenerate
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stability condition. For 1 < h < g, denote by I';, the stable graph consisting of a single vertex of
genus g — h with h loops. Define

as the morphism induced by gluing the n 4 i-th marking with the n 4+ h + i-th marking for 1 < i < h.
Let I'}, be the quasi-stable graph obtained by subdividing each edge of I';,. Consider the following
diagram:

Jg—h,n+2h ” JFh Jg,n

\ l | iﬂ (33)

g h,n+2h ” Mg, .

Here, the right square is a Cartesian diagram, and the morphism jg—h,n—i—Qh — Jr, is induced by
Lemma 2.4.

Proposition 4.6. Let 7: Jo — B = Mg,n be the projection. Let yp, : jg_hm”h — jg,n be the
composition in (33). Then we have

g h h 00 ks 2k;—1 2k;—1
v -1 (—1) (—1) i Bog, + 5;
T —1= *

with a; = Ynyi — & + Entnti and B; = Ypgnai + Eni — Enthti-

Proof. The morphism 7 : J,, — /\/lgn satisfies hypothesis in Lemma 4.2. By Lemma 4.2 we
compute the sheaf QL o)1, o8 /L Aggn, ), on each chart and show that they glue.
We consider the morphism (10). Let jry : Picr, — Picy ,, be the finite morphism. Then the

following diagram is cartesian
p— ]g—[ —
Jg—t20 —— Jgn

L, b

. Vi .
‘Blcpz — Picy

For each i, there exists a quasi-stable vertex v; and two edges e = (h;, h;) and e = (h/, E’Z) connecting
v; and the unique stable vertex vy where h;, b are half-edges at vg. By Lemma 2.2, ¢ is smooth, so
the normal bundle of j,_, is isomorphic to the pullback of the normal bundle of Jry- Therefore, the
Chern roots of the normal bundle of Jry are given by Yn, + ¥p., Y + @ZJE; for 1 <4 < {. By the

genus 0 relation [8], we have
Un, = —Eny + &py and Y = &y — &gy - (34)
The result now follows from Example 4.5. O

Let 7Y™ be the virtual tangent bundle of 7 : Jo — B. To relate the Todd class of T and the
Todd class of R, we use the following adaptation of Faltings-Chai [26].

Proposition 4.7. Let 7 : Jo — B be a compactified Jacobian. Then we have Q, = 7*E where

E = 7.0t is the Hodge bundle.

m,log —

,log
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Proof. By [26, Chapter VI, Theorem 1.1] (also [58, Lemma 4.3.10]), the corresponding identity was
obtained for certain compactified abelian schemes. After pulling back to B, J¢ and the compactified

abelian scheme have a common refinement. Since log modifications are log étale, Q}r log does not
change under log modification. Hence we get the result. O

By combining (28), (29) and Proposition 4.7 we have
td(TV") = 7tdV(E) - tdV (R,) L. (35)

4.3 Todd class for the birational model

We consider the projection

T 7&?) — B
where j(cg) — Jo xp Jo is a log modification constructed in Definition 3.7. By Proposition 3.9 (a),
7 is semistable and by Proposition 3.10, it is a compactified abelian fibration. We generalize the
result in Section 4.2. By the same argument in Proposition 4.7 we have

Q%,log =7 (E D E) . (36)

Proposition 4.8. Let 7 : Jo — B denote the projection, and let 7y, m : Jo x g Jo — J ¢ represent
the two projections. Then the following holds:

td(T2)

s ) FHAT g0 p) = 1Y (Re) - mitd” (Ry) ™ - mytd (Ra) ™ (37)

Proof. Consider the fiber diagram

jC XBjC — jc)(jc

| o

B—28 BB,

where Ap : B — B x B is the diagonal. Since J¢o, B are smooth and 7 is flat, we have
chxsjc/B = TFTTjC + W;ch —20"Tg =m{Ty" + 5Ty
in K% J¢o xp Jo). Using (35), we obtain

td(chXBjC/B) = td(E®2)v ’ thdv(lR’ﬂ')_l : Tr;tdv(Rﬂ')_l .

Finally, by applying Lemma 4.2 and (36), we derive the desired result. O
Let now & be a cone of Jo x g Jo parametrizing two quasistable graphs I'y, 'y with stabilization
I". Keeping the notations of Corollary 3.6, a cone ¢ of jg) lying over x has the form
c=RG" W x I Rix J] R (38)
ecEs1Vs2(T) ecEps1nsa(l)

Whefe, for efe Es1052(1) " the component R% is either the £, < £, or the £, < (. piece of the
resolution o
RQZO XRZO RQZO = {(Elepéle/l’elegﬂglcfz) : £,e1 + 6:2/1 = E/eg + EZQ}'
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Proposition 4.9. As a piecewise polynomial function on j(cz«), the restriction of (37) to the cone

(38) is given by
e1? ve2 €1’ 7e2

td(max (¢, ¢, ))td(le — min (£, ,2.))

e1’ e

td(max (€, , ¢, ) —min (£, , ¢, ))td(£.)
11

ecEs1Ms2(T) e1? veg

where £, = (, + (., is the total length of the edge.

Proof. The cone c is the product of cones Rx, ]R%O and ]R%O. Cones of the first two kinds correspond

to strata of jg) on which the map to Jo xp J¢ is an isomorphism, so the relative Todd class is

trivial on them. To ease the notation, we assume E’el > 5’62. Then, in the third case, the cone and
its two projections look as follows:

0 =l z=1 0, =ley=1
2
—
0 =0,0= o =t 0. =0
|

0o=0 £ =1

Let x,y, z be the piecewise linear functions on R%o with slope 1 along the rays indicated in the
diagram, and slope 0 on the other rays. On the cone ¢, formula (32) reads

td(x)td(y)td(z) td(z +y+2) td(x +y+ 2)
td(z +y+2) td(x)td(y + 2) td(z + y)td(z)
td(y)td(z + vy + 2)

td(z +y)td(y + 2)

tdY(Rz) - 7ftdY (Ry) - mitdY(Ry) ™! =

Given that z = £ — £, , y = £, —{, and z = £, the result follows. It is easy to treat the analogous

case where £, > (¢, , which simply interchanges the roles of £, and Ee’l , leading to the claimed
formula. O

5 Fourier transform

5.1 Derived equivalence of compactified Jacobians

In Section 3, we construct an extension of Poincaré line bundle. We show that it gives a derived
equivalence of compactified Jacobians, following Arinkin’s argument in [6] (see also [44]).

Theorem 5.1 ([6]). Let B = M, , and let €1, €2 be two non-degenerate stability conditions. Let
P := f.P € Coh(J¢ xp J:) be pushforward of the extended Poincaré line bundle. Then P induces
a derived equivalence

§ = ®f : Dlgoh(jg) — ch)oh(jg)
(B) with the inverse kernel given by P = Hom(P, O) @ mhwr[g].

. . . b
which is linear over D]
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Proof. Over B = M, the relative Jacobian J% — B is a é-regular family of semi-abelian schemes
(5, Proposition 3.3]). By Theorem 1.2, the kernel P = f,P = Rf,P is a maximal Cohen-Macaulay
extension of Poincaré line bundle. Therefore, the argument in [6, Section 7.3] applies to the family
Jc — B and shows that that § is a derived equivalence. ]

For a separated scheme X, let K((X) denote the Grothendieck group of coherent sheaves on X.
We consider the Baum-Fulton-MacPherson homomorphism ([29, Chapter 18]):

71 Ko(X) = CH.(X, Q). (39)

When X is smooth, we have 7(F') = ch(F) Utd(Tx). This homomorphism is functorial with respect
to proper pushforward and l.c.i. pullback [29, Theorem 18.2].

In our case, the base B = M, ,, is Deligne-Mumford stack and so (39) has to be modified. One
can use the Baum-Fulton-MacPherson homomorphism for quotient stacks [30]. For our purposes,
the following simple modification suffices. We may take a finite étale morphism B’ — B where B’ is
a scheme (for example, we may take B’ — B to be the moduli space of curves with a level structure).
After base change to B’, the calculations involving 7x hold in the Chow group with Q-coefficients.

We next fix our notation for relative correspondences ([20]). Let w1 : My — B, my : My — B be
two proper morphisms between smooth Deligne-Mumford stacks. Then any relative correspondence

Z € CH*(MI X B MQ)

defines a morphism
Z : CH* (M) — CH*(My), o = mou(mie N [Z]),

where 7r!1 is the l.c.i. pullback. We interchangeably use the relative correspondence and the induced
morphism.
Now we consider the Chow-theoretic Fourier transform induced by Theorem 5.1, following [42,

Section 2.3]. Since J¢ x g J¢ is Ici, the Todd class of the virtual tangent bundle TjCXBjC is defined
as an operational Chow class:
td(TjOXBjO) S CHzp(jC XB jc)@ .
The (Chow-theoretic) Fourier transform is defined by the relative correspondence
5= td(—chXBjc) N T(f) € CH*(jC X B jc)@. (40)
The inverse Fourier transform is given by
_ X ——1 - =
F 1 i=td(—(p1 xBp2)*Te)NT(P ) € CH*(Jo xp Jo)g - (41)

The choice of the asymmetric Fourier transform will be useful for understanding the Fourier transform
of tautological classes. By Theorem 5.1, we have

FoF '~id, FloFxid. (42)

The Fourier transform of the class of a section which factors through the locus of line bundles
Jo C Je (16) can be easily computed:

Proposition 5.2. Let €1,¢e5 be two non-degenerate stability conditions for p : C — B. Let
s: B — J{ be a section which factors through J& Let ig := (s,id) : Jo — J& xpJg be a closed
embedding. Then we have

3_1(Ch (i5P)) = [s].
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Proof. On the open locus J5' xp Je C I8 xpJg&, the sheaf P is the usual Poincaré line bundle.
Since is factors through the open locus, the pullback igP is a line bundle. For j = 1,2, let
T jg X B jg — jg be the j-th projection. By the functoriality of (39), we have

F([s]) = s (i1 - td(=T5,. v 1 7,) - 7(P))
= (m2 0s)s (td(Ts,) - td(=i Ty, 7. )isT(P)td(=T522))

= T(i:f)td(—Tjéz)
= ch (i*P).

By (42), we get the result by applying 1. O

5.2 Logarithmic Abel-Jacobi theory

We compute the Fourier transform of the closure of rational Abel-Jacobi sections. The main
result is Proposition 5.8, which extends Proposition 5.2. A key ingredient in our approach is the
desingularization of Arinkin’s kernel constructed in Theorem 1.2.

Let Jc be a compactified Jacobian with respect to a non-degenerate stability condition € of
degree 0. For b € Z and a € Z™ with ), a; = (29 — 2 + n)b, the rational Abel-Jacobi section
ajy, : B --» Jo is given by t € B = O¢, (Y axi) ® (w%;ll(’)g). The section is well-defined on the
locus where the underlying curve is smooth.

We resolve the indeterminacy of the rational Abel-Jacobi section by taking the following f.s.
fiber product in the category of algebraic log stacks (see Section 2.1)

Bya —— Jo

| |

B2, LogPic.

Since Jo — LogPice is a log modification, By, — B is also a log modification and By, — Jo
extends the rational Abel-Jacobi section.

The stack By, is not smooth. For our purposes, we use a smooth modular compactification
constructed by the second author. As we only need the properties of the construction, we do not
review the terminology and rather refer the interested reader to loc.cit.

Theorem 5.3 ([47]). An algebraic logarithmic stack By, : (LogSch/B)°® — (Grp) is defined by
(S — B) — (C" = Cg,a), where C' — Cg is a quasi-stable model and « is an equidimensional
piecewise linear function on C” where Ocv (>, aiz;) ® (w%;lgg) ® Ocr(a) is e-stable. Then By, is a
Deligne-Mumford stack which is connected and smooth.

The resolved Abel-Jacobi section is defined by
H . nE€ T ! ®—b
Apsa Bb;a —Je, (C — C, a) = OC/(Z CLiZL‘i) ® (wc’,log) ® OC’(a) : (43)

We aim to compute the Fourier transform of (43). By pulling back the diagram (20) along the
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resolved Abel-Jacobi-section (43), we obtain the following fiber diagram

e ;jb;a —(2)
Jb;a JC

s I
— ajh.  — —
Tha —2+ Jo xpJdc

jc<ﬂ2
ok
B«

an;a -

B, Jo .

(44)

By Theorem 5.3, the resolved Abel-Jacobi section aj,, is a morphism between smooth stacks and
hence ajy,, is l.c.i. Since 7 is flat, ajy,, is also l.c.i.

Lemma 5.4. In the diagram (44), we have (ajg;a)![jg)} = [jf:} in CH*(jli/a).

Proof. We first show that jg: is reduced and irreducible. By Proposition 3.9 (a), the composition
w1 o f is a saturated morphism. Therefore, the outer square is the f.s. fiber product. Similarly,
the bottom square is an f.s. fiber product, and thus, the top square is also an f.s. fiber product.
The morphism g is a log modification because the top square is an f.s. fiber product and f is a log
modification. This shows that Jlf;a is reduced and irreducible.

By dimension considerations, the class (ajg;a)![jg)] is some multiple of the fundamental class of

Jy., since it is irreducible. The multiplicity can be verified on the open locus where the underlying
curve is smooth. Over this locus, the map Bj , — B is an isomorphism and g is also an isomorphism.
Therefore the multiplicity is one. ]

We describe the pullback of the extended Poincaré line bundle P along the resolved Abel-Jacobi
section. From Theorem 5.3, k-points of J; | are tuples

(Cl,CQ,C/ — Ci,Oé,LQ) ; (45)

where C' — C1, Cs is a common semistable model, « is an equidimensional piecewise linear function
on Cy where O¢, (>, aix;) ® (wgiﬁ)g) ® O¢, (o) is e-stable, Ls is a e-stable line bundle on Cs.

For a log curve C' — B, we have the formula of the Deligne pairing of an arbitrary line bundle
and a line bundle associated to a piecewise linear function.

Lemma 5.5. Let p: C — B be a log smooth curve over a log smooth base B. For a piecewise
linear function a on C' and a line bundle L on C, we have

(Oc(a),L)c = > deg(Llw) - a(w) € PL(B). (46)
wEV(Fcb)

Proof. We explain the right hand side of (46). For each generic point b € B of a maximal cone,
there exists a map PL(C}) — ZV ) induced by taking the slope and composing with the divisor
map as in [34, Section 3.3]. The right-hand side of (46) gives the value at each maximal cone.

Both sides of (46) is stable under log modification of the base B and taking semistable modification
of the log curve C — B, as the degree of L is 0 on newly introduced exceptional components.
Therefore it is enough to show (46) when B and C are smooth and logarithmically smooth. The log
curve p is smooth over the nonempty open locus of B, where the left hand side of (46) is trivial, it
is enough to check the multiplicity of left hand side on each boundary of B.
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We represent the line bundle L as the difference of two very ample divisors L = O(D; — Ds).
From the above reduction step, it is enough to prove (46) when a is O¢(E) where E is an irreducible
component of p~'D and L is an effective divisor intersecting E transversely. When p~'D is
irreducible L can be written as a linear combination of a divisor flat over B and p~'D, Since p~ 1D
is the divisor pulled back from the base, it does not contribute. When p~!'D has several irreducible
components, we first consider the case when L is a linear combination of a divisor flat over B and a
vertical divisor not equal to E. Then (O¢(«), LYo = O(mD) where m is the multiplicity of E and
E which is the same as the right hand side. When L contains contribution of E, E can be written
as p~!'D minus other vertical divisors transverse to E, hence we get the result. ]

Remark 5.6. In fact, Lemma 5.5 holds without assuming that B is log smooth. However, the
argument in this more general setting is more involved, and since we do not need it here, we omit it.

From (45), we consider the universal curve C' — j;f; the equidimensional piecewise linear
function o on C’ pulled back from C4, and the universal line bundle Ly on C’ pulled back from Cs.

Corollary 5.7. For the piecewise linear function 8 on j,i given by (O¢v (), La)cr, we have

ajpa(c1(P)) = g*my (= broa + Y i) + 3.

i=1
Proof. By the proof of Lemma 5.4, the upper square of (44) is an f.s. fiber diagram. Since f is log
modification, J; — Jc is a log modification. By Proposition 3.19, we obtain:

~ % ~

Al (1(P)) = ( Lalor, Ocr (Y @) @ (Wi ) © Ocr())

= g*ﬂ';( — b/<&o71 + Z ai&) + 5.

i=1
The last equality follows from the linearity of Deligne pairing, together with Lemma 5.5 and the
property that (L, Oc(s)) = s*L for any smooth section s of the universal curve. O

We say a class v in PP(J¢) is supported away from the integral locus if it is a linear combination
of normally decorated strata such that the stabilization of no stratum I' corresponds to an irreducible
curve.

Proposition 5.8. For b € Z and a € Z" with ), a; = (29 — 2 + n)b, there exists a class v, in
PP(J¢) supported away from the integral locus such that

S (ajpa) = exp(—bro,1 + Z a;i&i) (1 + Yba) -
i1

Proof. We consider the diagram (44). Let aj;,;a : jZ;a — Jo xp Jeo be the pullback of the resolved
Abel-Jacobi section. Then we have

(a]1) (td(=T5 x 70) N T(P)) = (@) (4d(=T5,, ., 7.) N T(REP))
= (afpe)' (td(=T5,7.) O fu7(P)
= 9. (@jpa) (ch(PA(Ty0) S (=17, 7,) N [TE])
= 9. (alpa(h(P)td" (Rz) - w7td" (R) - w30 (R) ™) M [T ]) -

)

(47)
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The first equality follows from Theorem 1.2, the second from the functoriality of 7 under proper
pushforward, the third from the base change formula for l.c.i. pullback, and the fourth from (36)
and Lemma 5.4.

We now compute the Fourier transform of aj,,. From the definition (40), we have

§(@ina) = m2u(a) (¢d(=T7,,7.) N 7(P))
Therefore, applying (47), we get
§(2la) = m220x (alpa (c(P)td (Rz) - mitd” (Rer) - mitd” (Re) ™) N[5, -
The pullback of the extended Poincaré line bundle along aij;a is calculated in Corollary 5.7:

3ipach(P) = exp(g*mh(~bro1 + Y ai&;)) exp(3) .
=1

Since the pullback along log maps preserves piecewise polynomials, by applying Proposition 4.4 and
Corollary 5.7 the class .,
ajy, (tdY (R7) - mitdY (Rq) ™1 - m3td¥ (R) 1) (48)

lies in PP(/JE). The pullback of a piecewise polynomial along a log map is also piecewise polynomial.
Moreover, the composition 7o o g is a sequence of log modifications. Since the pushforward of a
piecewise polynomial is a piecewise polynomial [59, Proposition 67], we have

Toa = T2gs (€xp(B) - ajpa (tdY (Rz) - mitdY (Ry) ™1 - m3td¥ (Re) 1)) — 1 € PP(Jc).

Lastly, we show that ., is supported away from the integral locus. Over the locus where
the underlying curve is integral, the Abel-Jacobi section is well-defined without log modification.
Therefore, the indeterminacy locus of aj,,, only contains reducible stable curves. Thus, over the
integral locus,

(i) the function g is 0, and

(ii) the section awjz;a lands in the locus of 7(5) which is isomorphic to Jo x5 Jo.

From (i), we find that exp(/) = 1. Combining (ii) with the Todd class formula of Proposition 4.9

we see that the smaller of the coordinates £, ,/,, is zero, reducing (48) to 1 over the integral locus.

By combining these two observations, we conclude that the class 7., vanishes over the integral
locus. O

5.3 Partial Fourier transform

Let m : Jo — B be the compactified Jacobian associated with a nondegenerate stability condition.
Let Jo C J¢ be the open substack corresponding to line bundles. We consider the Fourier transform
restricted to the product Jo xpg Jo.

Proposition 5.9. Let §~! € CH.(J¢ xp J¢) be the inverse Fourier kernel (41). Then we have
3_1|7c><BJC = (_1)9Ch(7)v) ’ WT tdv(Rﬂ)_l )

where R, is the residue sheaf for m defined in Lemma 4.2.
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Proof. Let E := W*QII) — B be the Hodge bundle on B. Consider the projection m Xp mo :
Jo xgJo — B. On Jo xp Jo, the inverse Fourier transform is expressed as

S_1|70XBJC = (=1)9-ch(PY) - (m1 xp m2)*ch(det E) - td(T* td(—(m1 xp m2)*TR),

Jc XBJC)
where the sign comes from the shift [—g] in P Applying Lemma 4.2, this simplifies to
td( ) td(—(ﬂ'l X B 772)*TB) = tdv(RW)il . tdv((ﬂ'l X B 7T2>*E®2) .

From [54, Corollary 5.3], it follows that ¢(E)c(EY) = 1, which implies that all Pontryagin classes of
E vanish. Consequently, the identity

td” (E)ch (; det(E)) _1. (49)

holds. With this, the desired result follows. ]

JcXBJC

Now we consider a partial Fourier transform
F° :=ch(PY) € CH.(J¢c x5 Jc). (50)
When the genus is important, we denote §.

We prove an elementary property of §°. Let J% — B be the relative Jacobian of multidegree
zero line bundles. When the stability condition for the second factor is small, then we can further
restrict (50) to Jo Xp J%. The morphism g is the action defined in (8).

Lemma 5.10. On J¢ x5 J&, we have ¢1(P) = —u*6 + 110 + 750.

Proof. Let p: C — Jc % Jo be the universal quasi-stable curve. By the Deligne pairing formula
(18), we have ¢1(P) = ps«(c1(L1)c1(L2)). Therefore we get the desired formula. O

5.4 Recursive structure of Fourier transform

We prove that the image of the Fourier transform, when restricted to Jgn, has a recursive structure.
For a nondegenerate stability condition €, we consider the partial Fourier transform (50), given by
Fo: CH(T;,,) — CH* (Jgn).

We state the main result of this section.
Theorem 5.11. Let v be a piecewise polynomial class on 7;71 and let =, be a monomial in the
&-classes and the moﬂ—iclass on j;n. There exists an effective algorithm to compute §g(7v - Eg) in
terms of §} (Zp) over My, ,,, for all pairs (h,m), where either h = g,m < n or h < g with any m > 1.

The precise algorithm in Theorem 5.11 will be clear from the proof below. The basic idea is
straightforward - a piecewise polynomial class on 76 is supported on the boundary. Each boundary
stratum (of positive codimension) corresponds t to some stable graph I' along with a quasi-stable
subdivision I and an e-stable multidegree § on I'. We will show that the Fourier transform can be
computed in terms of Fourier transforms on “smaller” J}, ,, corresponding to the vertices of T'.

Before proving Theorem 5.11, we study two extreme cases: a class supported on a maximally
subdivided stable graph (33) and a class supported on a stable graph. We begin with the first case.
Consider the following diagram where the right square is a fiber product

h T 0
JoGy T Jon

1

']E h,n+2h > Mg_hnt2n > Mg -

33



Proposition 5.12. For 1 <h < g, let jp : jg_h7n+2h — Jg.n be the morphism defined in (33). For
a class a in CH*(J4_p nton), we have

8o ((n)sar) = (rn)«q"Fp ().

Proof. To simplify notation, we denote by C' = ég,n — B = ﬂgm and C' = @g_mﬂrgh — 0B =
Mg_h nt2n the two universal curves. Consider the diagram:

i 0Ch I 5 0 _m , 50
Joc XoB Jor ™ —— Jo X Jog —— Jg

| | (52)

— Ih —
Joo —— J¢

where 7, is the map defined in Lemma 2.4 and the square is Cartesian. Let ¢ : J%,Giln — J%, be
the projection as described in (51). Let v : C' — C’ be the morphism that results from gluing the
(n 4+ 2i — 1)-th and (n + 2i)-th markings for all 1 < i < h. Let £L°™ denote the restriction of the
universal line bundle on C' — J% to J%,G f”, and let £ be the universal line bundle on C’ — J%,.
We first compare two Poincaré line bundles. Let P, be the Poincaré line bundle on J¢ xp J%

and let P,_j be the Poincaré line bundle on Jor XoB J%/. It is easier to work with the universal
sheaf described by a rank 1 torsion free sheaf. Let F, be the universal sheaf on C' — J¢ and F,_j,
be the universal sheaf on C' — J. For the gluing morphism v : ¢! — C’ over J¢or, Lemma 2.4
implies that

InFg = veFgh .
The Deligne pairing naturally extends when one of the factors is a rank 1 torsion-free sheaf via an
— h —
appropriate determinant line bundle ([5, eq. (3)]). For id x g : Joc XoB Jgé(}’" — Joc xXonB ch, we

have
(id x ¢)*Pyg—p, = (id % )" (Fg—n, L)cr = (Fgon, vV L") cr
= Ty L5 = (5) Py s (53)

where the third isomorphism follows from v, being exact.
We apply the above computation to (52). For any a € CH*(Jy_p n42n), we have

Ty ((n)xe) = mou (71 (g0 )x U ch(Py))

In)+((m1)" U (jp,)"ch(Py))

In)«((id x ¢)*mia U (id % q)*ch(Py_4))
n)

(

= 72 (J)

= 2. (J)
(Jn)«(id x g)* (77 U ch(Py—p))
)
h)

= T2
= (rn)xmax(id x @) (770 U ch(Py—p))
=(r

where the third equality follows from (53) and the other equalities are from the projection formula.
This completes the proof. ]

«¢ T2 (Tia Uch(Py_p)) = (11)+q¢"Fy_p(a)

Now we describe the strata of j;n corresponding to stable graphs. For a stable graph I of genus
g with n markings, let

HF = H mg('v),n('v) — ﬂg,n
veV(T)
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denote the gluing map. Let § : V(I') — Z be an e-stable multidegree. Let Jr; be the compactified
Jacobian defined as in (13). Then Jr; is smooth.

Let T be a stable graph with A*(T") = 0, and let § : V(') — Z be the unique e-stable multidegree.
Then there exists a nondegenerate stability condition €, for ﬂg(v),n(v) of degree §(v) such that the

stratum jr§ is isomorphic to Hvev(r) j;&'u),n(’u)'

Proposition 5.13. Let I' be a stable graph with h!(I') = 0. For each vertex v € V(I'), choose a
class o, € CH*(jZJ(U)m(U)). Then, the Fourier transform satisfies the factorization property:

S0 I o) = I 5w

veV(T) veV(T)

Proof. Let Pr be the restriction of the Poincaré line bundle on j;n XMyom J!%n to Jr, X W, J% By
[43, Lemma 5.5] we have
Pr =Myev)Po,

0

where P, are Poincaré line bundles on jg(v),n(v) X5 J;(v),n(v)' This gives the result. O

g(v),n(v)

Let T be a stable graph with R'(I') > 0, and let 6 : V(I') — Z be an e-stable multidegree. We
describe the boundary strata Jp, up to birational equivalence. We consider the composition of
morphisms

rs = Bier, = [ Bicgwmwsw = [ LogPicyw) e (54)

veV (D) veV(I)

where the first morphism is from (13), the second morphism is from (12) and the third morphism is
from (15). Choose any nondegenerate stability condition e, for ﬂg(v)m(v) of degree §(v). We denote

7= 11 Tyyaw -

veV (T")
By combining (54) and (9), we obtain an f.s. fiber diagram

5 —r
JF5 5 > J 0

I } (55)

Jr; — HvEV(F) LogPic () n(v) -

Since the right vertical map is a log modification, r : jp5 — Jr, is also a log modification.
To understand the space Jr;, we must study the composed map p from (54).

Lemma 5.14. The stack jr s parametrizes tuples
(C,L,7,C., ),
where
e ( is a quasi-stable curve, and L is a e-stable line bundle.

e 7 is a specialization I'c — T satisfying (56).
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e (! is a quasi-stable model of C,, and «, is a piecewise linear function on C), such that

Ly () is €,-stable

Proof. The moduli space jp5 parametrizes triples (C, L, 7), where C' is a quasi-stable curve, L is an
e-stable line bundle, and 7 is a specialization from the dual graph I'c of C to I', so that for each
ve V(D),

> degLic, =6(v). (56)

weT~1(v)

Let v : C¥ — C be the partial normalization of C' determined by normalizing along the nodes corre-
sponding to the edges 77 !(e),e € E(T). Write C¥ for the union of components of C* corresponding
to the subgraph 77! (v) for v € V(I'). The morphism ¢ sends (C, L, 7) to

(01,;7 V*LU)UEV(F) )

where v*L, is the restriction of v*L to C}. The quasistable components of C' lying over edges
e € E(I') become rational tails of length 1 attached to the components C}, and v*L, has degree 1
on such tails. There is a unique piecewise linear function 3, on C} which has value 0 at the vertices
which are not rational tails, and slope 1 on the oriented edges emanating away from the rational
tail vertices. The line bundle v*L,(3,) then has degree 0 on rational tails, and hence is induced by
a line bundle L, on the curve C, obtained by contracting the rational tails of C}/. The composed
map p takes (C, L, T) to
(va [LU])vGV(F)

where L, is the associated log line bundle of L,,. O

One difficulty in understanding (55) is that the map s : jp(s — 7% has positive relative
dimension. To address this, we introduce an algebraic log stack that sits in between, which provides
a genus-recursive structure for the Fourier transform.

The logarithmic multiplicative group Gog is an algebraic log stack whose functor of points on log
schemes S is given by Giog(S) := HO(S, M) ([51, Definition 2.2.7]). It contains the multiplicative
group G,, as a subgroup. Consequently, any (G,,)"-torsor T" on a log scheme extends canonically to
a (Gjog)"-torsor Tiog by extension of scalars.

Proposition 5.15. For a stable graph I', choose a spanning tree of I' with complementary edges
labeled by e; = (hg, h}) for 1 < i < h}(T). Let T be the (G,,)" @-torsor over 7' defined by

h'(I)

T=@P Ly, ®Ly)*. (57)
=1

Let Tiog as the associated (Glog)hl(r)—torsor. Then the morphism s : jpé — 7 defined in (55) is a
log modification of Tj,g.

Proof. We use the explicit description of Jr , broven in Lemma 5.14. Given data (C, L, 7) as above and
an edge e = {h, '} consisting of two half edges, we write C},, Cs for the two preimages of the node in
the stabilization of C' corresponding to the half edges 771 (h), 71 (k) € T¢. Similarly, let [L]|x, [L]|ns

denote the restrictions of an element of [ () LogPic y to Cj, and Cy, respectively.

VeV g(v),n(v

36



Let 7 denote the category fibered in groupoids over the (unrigidified) stack HUEV y LogPic () n(w)
parametrizing an element of HueV(F) LogPic(,) n(v) together with isomorphims of log line bundles
at half edges

[L][n = (L] -
The space of isomorphism classes my(7) is then, as in the classical case, a (Giog) W' (T)_torsor. In fact,

by choosing a spanning tree in I', with complementary edges e; = {h;, h}}, for i =1,---  hy(T), the
mo(7) is identified with

RU(T) RL(I)
@ Lso([L]|n,, [Lln) = @D (LI}, @ [L]ln) ™ - (58)

=1
Since the log Picard group LogPic, ,, satisfies the log Néron mapping property by [33, Theo-
rem 6.11], and the same holds for Gy, it follows that any (Glog)hl(r)—torsor over LogPic, ,, also

satisfies the log Néron mapping property, and in particular 7o(7) does. Moreover, the normalization
Jr; is toroidal, and there is a natural rational map Jp, --+ mo(7T) over the locus of line bundles.
Thus, there is a lift of the map p defined in (55) to a map

p s — mo(T).

A standard deformation theory argument shows that this map is log étale. It is also proper and
birational, and hence it is a log modification. Therefore, diagram (55) in fact factors as

JF5 — T 7—)‘ =I's jF(S
[ I
Try —— 70(T) — [Loev ) LogPicy(u) n() -

with the top right arrow a (Glog)hl(r)—torsor and the top left arrow a log modification.
The pullback of the (Glog)hl(r)-torsor mo(T) to T along the morphism ¢ is induced by the

(Gm)hl(r)—torsor, since the universal log line bundle on T s represented by an actual line bundle.
The explicit formula (57) follows from (58). This concludes the argument. O

For each vertex v € V(I'), denote by kg 1[v] € CH'(Jr;) be the corresponding class pulled back
from qgicg(v),n(v)'

Corollary 5.16. Let r : j{‘a — Jr, and s : jp6 —+ 7" be the projections defined in (55).
For 1 < i < n, r*§ = s + «a; for some o € PL(Jr,). Furthermore, for each v € V(I'y),
*k0,1(v) = s¥ko,1[v] + afv] for some afv] € PL(Jr;).

Proof. Let r*C' and s*C' denote the universal curves on jré, pulled back respectively from 71“5

and jr‘s. Consider their components in the respective normalizations corresponding to a vertex
v € V(T'). Following the notation in Lemma 5.14, these components are CJ and C,, with a log
blowup C!, — C,,. The universal bundles 7*L and s*L, pulled back to C} then become

L, (av)> L,
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respectively, where «,, is the piecewise linear function defined in Lemma 5.14. The log canonical
lines bundles pulls back to the log canonical bundles on each C and C,. Therefore,

r*& =) (c1(Ly(aw))) = zie1(Ly) + xfay, = s¥& +

for the piecewise linear function oy = ] .
For kg 1[v], let p, : C}, — Jr, be the projection. Then

T*”OJ[U] = (pv)s(c1(Lo(aw)) - 1 (Wlog)) = (pv)s(c1(Ly) - 1 (Wlog)) + (Po)«(c1(Ly) - o)
= (pv)«(c1(Lo) - c1(wiog)) + a[v]

for the piecewise linear function «fv] defined by

afv] = (po)«(aw - c1(wiog)) = (@, c1(Wiog))
as in Lemma 5.5. O]

We compare Poincaré line bundles up to birational equivalence. For the relative Jacobian
Jgn — My, and a stable graph I' of genus g with n markings, we denote

o 0
Jo= 11 Jyumm
veV(T)

and
G’"L Pp— Q JE—
JF T ngn ’MF .

Similar to the diagram (51), we have a commutative diagram

T
Jom L g2,

/ 1 l (59)
J2 > Mp

» Mg,

where the morphism ¢ : Jf(?m — Jr induced by the partial normalization of the underlying curve
is a G?;(F)—torsor by Lemma 2.3. For each v € V(T'), let Py(v),n(v) be the Poincaré line bundle on

0
Jg(v),n(v) Xmg(v),n(v) Jg(v),n(v) and denote

. ,—~I
Pl = Buev ) Po(wyn(e) € Pie(] X, Jr)-

Let Pr be the restriction of the Poincaré line bundle on j;n Xy Jgn to Jr, Xy Jl(g’ ™. From (55),
we obtain a diagram

Pr Jrs X5, JE Pr
T Gm I Gm
Jl“5 XMF JF J XMF JF .

Here, we abbreviate r = r x id, s = s x id.
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Proposition 5.17. In (60), we have 7*Pr = s*P! in Pic(jp5 X7 Ir)-

Proof. We first write 7*Pr and s*P' as Deligne pairings. Let Cr — Jr s be the universal quasi-stable
curve induced by the morphism Jr; — Pic, ,. The partial normalization v : C¥ — Cr arises from

the morphism ¢ in (12). We pullback v along Jp5 X%p JIr Cm  Denoting by L; — Cr the restriction

of the admissible model of the universal sheaf from Jo and by M the pullback of the universal
. . 0 . .
multidegree zero line bundle from J5, the projection formula along v gives:

™ Pr = T*<L1, M>Cp = <V*L1, V*M>Clz . (61)

To compute s*P', introduce the contraction morphism g : Ct — Cp which contracts rational P!
components with a single special point. Let Ly — C7 be the pullback of the admissible line bundle

= . . L . S
from J °. By Lemma 5.14, there exists a piecewise linear function a on Ct which induces an
isomorphism

pLy = vl @ Ocu(a). (62)

We now compare the two line bundles using the Deligne pairing. From the established relation-
ships, we can write:

r*Pr = (v Ly, v M) = (V" Ly @ Ocy(a), v* M) = (" Lo, " M) e = s*PL.

Here, the first isomorphism follows from (61), and the second from (62). The third isomorphism uses
the fact that M is a line bundle of multidegree zero, allowing us to apply Lemma 5.5, which ensures
that the correction factor Ocy («) does not contribute. Thus, we obtain the desired isomorphism

r*Pr = s*Pr. O

We compute the Fourier transform of monomials supported on a stratum associated to a stable
graph I' via lower genus Fourier transforms.

Lemma 5.18. Let B be a log scheme with smooth underlying scheme, and let L1 ® --- @ Ly, be
a split vector bundle over B. Denote by T the underlying (G,,)"-torsor. Let p : M — B be a log
modification of Tioe. For any o € PP(M), the pushforward m,(c) lies in the subring of CH*(B)
generated by PP(B) and ¢1(Ly),- -+ ,c1(Lp).

Proof. Consider the projective bundle ¢ : IP’}}B =P(L1®--- L, ® Op) — B. It admits a morphism
IP% — Tjog over B which is a log modification. Choose a log modification M’ together with proper
surjective log modifications f : M’ — M and g : M’ — PR, Since f is a proper surjective
log modification, there exists o/ € PP(M’) where f.(¢/) = a. By [59, Proposition 67], we have
g«(a/) € PP(P). For any B € PP(P%), the projective bundle formula implies that m.(3) lies in the
subring generated by PP(B) and ¢1(L1),- - ,c1(Ly). Since pi(a) = pifu(a) = pirgs(a’), the result

follows. H
Corollary 5.19. Let I" be a stable graph of genus g with n markings, and let § : V/(I') — Z be an
e-stable multidegree. For any monomial in &1, ..., &, and the g 1-class E in CH*(Jr,), there exists
polynomials in &, kg, 1-classes =, on Jg((y)) (o) and o, € PP(JE((U)) (U)) such that
g; ((]Fg)*(E)) TF *q ( H g ~—*v 051))) .
veV(T)

Here, rp and ¢ are defined in (59).
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Proof. We consider the diagram (60). Consider a monomial = = £’ - H{f “ on Jr,. By Corollary
5.16, there exists o, a1, -+, ap € PL(jpé) such that

r'ri(@) = ' (ko +a0)™ - T (6 +ai)™) (63)

(2

We consider the (G,,)" (D-torsor T over Jr, defined in (57). By Proposition 5.15, the morphism
s jp5 — jr6 is a log modification of Tj,s. Therefore, we get

T (rs«(2)) = (r0)«q* m2« (77 (E) U ch(Pr))
= (rp) @ Tou s (1w 2 U s*ch(PY))

= (rr)«q m2es: ("7 (ko1 + a0)™ - [ [(& + ai)*) U s™ch(P"))

H Ty Eo av)) ;

veV(T)

where the first equality follows from the projection formula, the second equality follows from
Proposition 5.17, and the third equality follows from (63) and the last equality follows from
Proposition 5.15 and Lemma 5.18 together with the construction of Pr. O

We now complete the proof of Theorem 5.11.

Proof of Theorem 5.11. Let v be a piecewise polynomial class on j;n. Such a class can be expressed

as a linear combination of terms of the form [fg, Yo, where fg is an e-stable quasi-stable graph and
7o is a monomial of balanced -classes. We may assume that the graph is nontrivial.
To describe the boundary stratum J fmore concretely, consider that the graph [ arises from

subdividing a stable graph I' at h edges for some h > 0. By Lemma 2.4, we can find a stability
condition € on /\/lg hn+2hn With a map

e _
Jg-hnton = Jgn

whose image is the closure of the locus of curves with i self nodes. We can then lift the data of the
e-stable multidegree 0 : V(I') — Z to an ej-stable multidegree ¢ on a graph I's obtained from I' by
cutting the h edges that are subdivided in I', creating 2h additional markings, and choosing some
labeling for them. Using this multidegree, we find a diagram

= Jr  gen In —e€
JF& ’ Jgfh,n+2h 7 Jg,n

Lo o8

MF E— Mg,herQh E— ./\/lg,n.

with Jr, being finite over the normalization of J =

For the monomial ~p, and the -classes on unstable vertices, we apply the genus 0 relation (34)
on such unstable vertices. For a stable vertex v, let st : My () nw) = M ) be the stabilization
morphism. By [11, Proposition 3.14], we have

st™y; = ¥ — 6 (65)
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where §; € CHl(Dﬁg(v),n(v)) is the divisor class associated with the prestable graph consisting of two
vertices of genus 0 and g(v), connected by an edge, with the first marking attached to the genus-0
vertex. Then (65) thus allows us to rewrite 7y as a polynomial involving 1-classes pulled back
from Mrp and -classes associated with the last 2h markings on Jp,. In particular, no ¢-classes are
introduced at the edges of T'.

We consider the class 7*¥ - Z, where ¥ is a monomial in 1)-classes pulled back from My in (64)
and = is a monomial in ¢-classes and kg1 on Jr s- By Proposition 5.12, we have the equality

8o (Inedrs (0 - B)) = 1haq Ty p (Jra (77 (V) - B)) = 77 (V) - rhaq™ Ty (i1 (5)) , (66)

where the second equality holds due to the linearity of §;_,,. If h'(I') > 0, the Fourier transform
of (66) reduces to computing lower genus Fourier transforms by Corollary 5.19. If h'(T") = 0, the
Fourier transform of (66) reduces to a computation involving Fourier transforms §y corresponding
to the vertices of I' by Proposition 5.13. Since I' was a nontrivial stable graph, these vertices either
have smaller genus g, < g or have g, = g and n,, < n. This establishes the recursive structure of
the Fourier transform. O

6 The top degree part of the DR formula

6.1 The double ramification cycle formula

Suppose we have a genus g > 0, codimension ¢ > 0, integer b, and vector a = (ay, ..., ay) of integers
with sum (29 — 2 4+ n)b. Then the double ramification cycle (DR) formula [36] gives a cycle

DR (b;a) € CH*(M,0).

In the special case ¢ = g, this formula gives the (b-twisted) DR cycle, which encodes the divisorial
condition Oc(a1p1 + -+ + anpn) = (Weog)®?. But the formula gives a well-defined cycle for all
values of ¢, and the value ¢ = ¢g will not be special for anything we do in this section.

The formula given in [36, Section 1.1] for DR{(b;a) is

w(h)w(h')
b2 LIPS y—h' (D) I —exp (—f(ﬂ)h + ¢h/))
exp | ——=kK1 + Z Z@Di) Z T )« H
( 2 i 2 reGy., [Aut (L) e=(h,h")eE(T) U+ P
weWr . p codirr(l) c,

Here G, is the set of stable graphs for Hg,n and Wr . is the set of functions w assigning to each
half-edge h € H(T") an integer w(h) € {0,1,...,r — 1} satisfying the congruence conditions:

e If h; is the leg with marking i, then w(h;) = a; (mod 7).
e If e =(h,h') € E(T) is an edge, then w(h) + w(h') =0 (mod r).

o If v € V() is a vertex, then

Z w(h) = (2gy —2+ny)b  (mod 7).

h at v

The expression inside the brackets then has the property that its codimension ¢ part is a polynomial
in the integer parameter r for r > 0, and we take the constant term of that polynomial.
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It will be convenient for us to work with “total DR”, i.e.

DRy (b;a) = )  DR{(b;a).

c>0

One reason is that we can then factor out the exponential factor at the beginning of the formula
and write

DR, (b;a) = exp(DRD(b;a))DRP(b; a), (67)
where

b2 "L a?
DRD,(b;a) = —5 + E 511/%
i=1

is a divisor class and

—h'(T) 1 —exp <_M(¢h + W/))
r 2
DRPy(bia) = | > = (ir)s 11 (68)
e |Aut ()] e—(h 1) E(T) Yn + p
wEWF,r,b r=0

is the “piecewise polynomial part” of the DR formula. Thus the complexity of the DR formula is
contained in the DRP factor.

It will be convenient for us to isolate a single coefficient in DRP4(b;a) and describe it in a more
raw combinatorial form. Let G be a connected finite graph (if it is a stable graph with genus
assignments and legs, we ignore those features) and let a, be integers indexed by the vertices
v € V(G), subject to the relation ) a, = 0. Then define the double ramification cycle graph
invariant C(G) by

cG){ah) = r"O Y ] %w(h)w(h’) | (69)

weWe, , e=(hi) € E(G) r=0

Here Wg is analogous to Wr .3, but G has no legs and the conditions on w : H(G) — {0,1,...,r—1}
are simply:

e If e =(h,h') € E(T') is an edge, then w(h) + w(h') =0 (mod r).

o If v € V(') is a vertex, then

Z w(h) = —a, (mod r).

h at v

Then for a stable graph I' € G ,,, the coefficient of the pure boundary stratum class

1

m(ﬁ“)*l

in DRP,4(b;a) (or in DRy(b;a)) is precisely given by C(I')({a.}) after taking

ay = Z a; | — (29 — 2+ ny)b. (70)

leg i at vertex v
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It turns out that C'(G)({ay}) is a polynomial in the integers a, of degree at most 2|E(G)| [62, 61].
We think of C'(G) as an element

C(G) € Qlfa})/ (Z )

where the a, are now formal variables.

The full DRP formula includes tautological classes other than pure boundary strata classes - there
can be insertions along edges of polynomials in 1) + 1)’, the sum of the two 1 classes corresponding
to the two halves of the edge. However, the coefficients of these more general tautological classes in
the DR formula are still easily expressed in terms of the graph invariants C'(G). This is done by
modifying the graph slightly - if edge e has an insertion of (—1 —1')¢/(d + 1)!, then modify the
stable graph I' by subdividing the edge e into d + 1 edges (adding d new semistable vertices of genus
0). If the resulting semistable graph is I', then the coefficient in the DR formula is now given by
C(T') (after the same specialization of variables (70), which gives a, := 0 for all semistable vertices).
This perspective is explained further in [60] and will be used in Section 6.4.1.

6.2 The top degree part

The total DR cycle
DRy (b;a) = exp(DRDy(b;a))DRP,(b; a)

depends polynomially on the inputs b,a; [62, 61]. More precisely, the codimension ¢ part is a
polynomial of degree at most 2c¢:

DRy (b;a) € CH (M) ®q [Q[b, a1, .-, an]/(a1 + -+ an — (29 — 2+ 1))]4eq < 2 -

We can take the top degree part of this polynomial to define

DR, (b;a) € CH (M) ®q [Q[b, a1, - . an]/(a1 + -+ an — (29 — 2+ )b deg 26 -

We also let IS/Rg(b; a) be the part of the total DR formula DRy(b;a) in which the polynomial degree
is exactly twice the codimension. Clearly we can factor out the exponential factor:

DR, (b;a) = exp(DRD, (b; a))DRP,(b; a).

The main result of this section is a correspondence between the total DR formula and its top
degree part. The correspondence is most naturally stated using the negative zeta value regularization
convention

d R i=((-d—1) = _Bae g >0, (71)
! d+2

where B,, are the Bernoulli numbers.

Theorem 6.1. Let g,n > 0. For each 0 < m < g, let j,, : ﬂg,mﬂwgm — ﬂg,n be the gluing map
gluing the last m pairs of markings. Then

g m
1 . —~
DRg(b7a) = Z o9mm)! (]m)* Z (H kl) DRg*m(b;aakh_kl?k‘)Qa_k:2a"'7km7_km) ;

m=0 ’ k1, km>0 \i=1

where the infinite sums over k; of polynomials in k; are evaluated via (71).
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—~ Cc—

Note that we can take the codimension ¢ part of both sides to express DRY in terms of DR,_,,.
The correspondence can also be formally inverted by adding a sign factor:

Corollary 6.2. Let g,n > 0. Then

g m
—1)m
DRy(b;a) = ) CU™ G > (H k) DRy (b;a, k1, =k, k2, —ka, - ki, —kim)

m=0 ’ k1,....km>0 \i=1

We will prove Theorem 6.1 in Section 6.4 after first reviewing a formula of Zagier in Section 6.3.
We will then generalize to the universal Picard stack in Theorem 6.6 in Section 6.5.

6.3 Zagier’s formula for a DR coefficient

Zagier gave an alternative expression for the graph invariant C'(G) appearing in the DR formula - a
proof can be found in the notes [61]. We briefly recall Zagier’s formula here. It has the advantage of
being visibly polynomial in the a, variables.

To describe the formula, it is convenient to fix an orientation of every edge of the graph G (it
will be easy to see that this choice does not affect the following formula for C'(G)). Also, for each
edge e € F(G), let z. be a formal variable. The shape of Zagier’s formula is a sum over spanning
trees 1" of G. Given such a tree T, we need two auxiliary definitions before we can state the formula.

First, suppose e € E(G) is an edge that does not belong to the spanning tree 7. Then there is a
unique cycle in the subgraph T'U {e}; let z. 7 be the signed sum of z; over edges f in that cycle,
with signs given by comparing the orientation of f with the orientation of e as you go around the
cycle (which must contain e). In other words, z. always has positive sign in z 7.

Second, suppose e € E(G) is an edge that does belong to the spanning tree 7. Then the
subgraph T'\ {e} (given by cutting the edge e) has two connected components. Take the connected
component containing the head of e, and let a. r be the sum of a, for all vertices v in that connected
component.

Then Zagier’s formula states that

C(G) = (-1)IF@)I exp(ae 12 _ Fe . 72
( ) ( ) T spanzni;g treeelg“ ( 7 )61;,1[ GXP(Ze,T) ! coeff of [] 22 ( )
e€E(G) %e
Here the final subscript indicates to take the coefficient of [] . B(G) 22 when the bracketed expression
is expanded as a power series in the z. variables. Although the individual terms in the sum are not
power series in the z. variables due to dividing by z. 7, it can be checked that these poles cancel
in the overall sum, yielding an analytic function near the origin z, = 0. If a type of multivariate
Laurent series expansion is chosen that is compatible with regular power series expansion (e.g.
sequentially expanding as Laurent series in the individual variables z. in some fixed order), then

taking this coefficient can be moved inside the sum over 7" without changing the answer.
To write down a formula for the top degree part DR, we need to take the top degree part of the
DR coefficient graph invariant C(G). Let

c@eaall/| X a

veV(G)
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be the degree 2| E(G)| part of C'(G). It is easy to extract this from Zagier’s formula. The final factor
is the only one in which the degrees might be different in the z. and a, variables, so we just have
that

G = (-)EE | S ] explacaz) [T = . (73)

Ze, T
T spanning tree e€T e¢T coeff of H8€E<G> 22

6.4 Proof of Theorem 6.1

We begin by canceling some of the exponential factors exp(DRD) appearing on both sides of
Theorem 6.1. Since j k1 = k1 and j,1; = 1;, the projection formula lets us cancel all the factors

of k1 and 1,...,1, on both sides, so it suffices to prove that
g 12
m
DRP E:O om . Zk g H ki exp ( 1/1n+1 + ¢n+2) s 7(wn+2m—1 + wn+2m)>

DRP,_ (b2, by, —k, ko, —ka,y s Koy — ki) |-

We can see that both sides have the property that they only have insertions of powers of ¢ + v’
(along edges), which is a good sign. But we will begin by checking that for any stable graph T’
with no automorphisms, the coefficient of (jr).«1 is equal on both sides. We will then discuss in
Section 6.4.1 how to modify things to check that things still work when I" has automorphisms or
there are 1 insertions.

On the left side, the coefficient (which we will call L(I")) is simply C(I") with the usual specializa-
tion of variables (70) applied. On the right side, we have many terms that all produce a multiple of
(jr)«1 - we get one term for each stable graph of genus g — m with n + 2m legs such that gluing the
last m pairs of legs recovers I'. This is the same as taking a subset of the edges E(I") of size m such
that the complement I is still connected, and then attaching legs to vertices of IV where deleted
edges were attached. There are 2"'m/! different ways to label these legs with n+1,n+2,...,n+2m
such that gluing them in pairs recovers I', but they all give the same contribution. So we can think
of the coefficient on the right side (which we will call R(T")) as summing over all subsets of E(I") such
that the complement I" is still connected, then taking the DR coefficients C(I"”) with appropriate
specializations of variables, and finally evaluating the negative zeta value regularization.

We evaluate the C'(I') and C(I') that appear using Zagier’s formula (72) and its top degree
variant (73). As explained in Section 6.3, this requires choosing an orientation for every edge in T’
(and we use the same orientations on the edges of each I). We now write out what this gives for
the coefficients L(I"), R(I") on the two sides. We begin with the simpler left side to introduce some
shorthand:

L) = ()EON ST [Tepteers [T o= (74)

zZ
TCT eeT e¢T 67T) coeff of ] 22,
{av}—{b,ai}

Here the subscripts at the end mean that first we take the coefficient of [] . E(T) z? and then we do
the specialization (70) replacing the a, with the b and a; variables (using the data of the genus and
leg assignments to vertices in I).
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Then the right side can be written as

=> > nEOH ST explacrz) H ENIE . (75)

6,

m>0  SCE(T) TCI' eeT e€S coeff of []22,
|S|=m e¢S {av}>{b,a;, +k;},
F’::F\S k¢—¢(—d-1)

T is connected

We make a few notes to explain various things about the above formula:

e The factor 1/(2™m!) in the statement of Theorem 6.1 has been cancelled out by a factor
coming from the choice of labels for the 2m legs that would correspond to the m edges in 5,
as discussed above.

e We include the extra factor [[.. g z? because those are the variables for edges that are in T
but not I, and at the end we want to take the coefficient of z? with respect to all of those
variables too.

e The specialization of variables {a,} — {b,a;, £k;} indicates that we need to adjust the
endpoints of the edges in S by +k;. Although the signs and indices of the k; here depend on
the choice of labels described in the first note, it is easy to see from the following note that
this choice does not affect the final expression.

e The final subscript at the end, k‘d — ((—d—1), combines multlphcatlon by ] k; and summing
over k; > 0 using negative zeta regularlzatlon. Note that ((—d — 1) = —Bg12/(d + 2) is zero
unless d is even.

We simplify this expression by pulling out the sum over spanning trees of I - the spanning
trees of I are precisely the spanning trees of I" with edges disjoint from S, and conveniently if S
is disjoint from the edges of some spanning tree of I then I is automatically connected. We also
multiply by the sign factor (—1)|E (O that also appeared on the left side. This leaves a remaining
sign of (—1)™, which we incorporate into the product over edges in S. The result is

CDFOIRM =35y HexpaeTzeH e . (76)

TCTm>0 SCE(T)\E(T) |e€T g T eeS coeff of []z2,
|S|=m e¢S {av}—{b,a;,tki},
ks ((—d—1)

Note that taking the coefficient of [] 22 of an individual term like this requires choosing a multivariate
Laurent series expansion - we can do this for instance by choosing an ordering on the variables and
expanding as a Laurent series in each of them in turn. We do this in a consistent way, e.g. by fixing
an ordering of E(T).

To continue simplifying this expression, we need to process the steps involving the auxiliary
variables k;. We can do this before taking the coefficient of [] 22 by interpreting the bracketed
expression as a formal Laurent series in the z. variables with coefficients that are polynomials in
the a,, and applying these operations coefficient by coefficient. We first consider the specialization
of variables {a,} — {b,a;, £k;}. Again, performing this specialization requires choosing an ordering
S ={e1,...,en} and choosing one endpoint of each edge to add k; and one to subtract k; - we use
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the fixed orientation on edges of I' for this. We can then check (recalling the definitions of a.r and
Ze 1) that

m

[Z Qe T Ze Z Qe T Ze + Z ki(zei,T - Zei)-

e€T ] {av }—{ba;, £k} LET ] {av}—{b,a;} 1=1

Using this, our expression for (—1)IPMIR(I") becomes

>3 > (lewter= T Hexp (zer — 7)) ,

TCI' m>0 SCE(T \E T) |eeT e(;éT eeS coeff of []22,
|5| e¢s {av}>{b,a;},
kd—¢(—d—1)

where again S = {e1,...,en}.

We can now directly perform the negative zeta regularization. Note that

—~ —Bapo
[exp(FU) s ¢(—d—1) = @+ 2)d I
d=0

i (7 (75 )
eU
:<<eU1>2‘U12>’

using the standard exponential generating function for the Bernoulli numbers.
Taking U = 2., 7 — 2, and substituting this in, our expression for (—1)[FMIR(T) is now

22 Z Hexp (e H % < <ex]§)((p(;—T S E <ze,T1—ze>2>>

TCI' m>0 SCE(T ecT eES
\S| e¢ coeff of [ 22,
{av}—{b,a:}
where we’ve combined our two products over edges in S now that the eq, . .., e,, labels are unnecessary.

But now we can freely move the sums over m and S inside the bracket and evaluate them as the
usual product of binomials. The result is

Ze o exp(zer — %) 1
Z [H eXp(ae,Tze) H <Z67T Ze ((GXP(Ze,T _ 28) _ 1)2 (ZC,T _ Ze)2>>] coeff of HZQ

TCT LeeT e¢T
{av}—{b,a;}

This now looks a lot like (74) (recall we've multiplied through by the sign factor (—1)/EM but we
have a different meromorphic function of z. and z.r appearing inside the product over edges e ¢ T.
Note that for a fixed edge f ¢ T', the variable z; only appears in this one factor in the expression.
We claim that (when expanded as a Laurent series in the z. in the fixed order previously chosen)
the two functions

2y and <Zf 2 ( exp(zpr —zf) 1 >>
exp(zf,r) — 1 s I\ (explzpr —2p) — 12 (epr — 2)?
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have the same coefficient of any monomial [, zde with exponent d ¢ = 2. This will complete the
proof of the desired identity of coefficients L(I') = R(I).

To see this claim, note that the difference between these two functions is analytic near the origin
ze = 0, so it suffices to expand that as a power series and check that the desired coefficients vanish.
Let X = zy and Y = 2y — 2y (which does not use the variable z¢); then it suffices to check that
the coefficient of X2Y" in

X X e¥ 1

_ +_)(2 -

eXtY — 1 X+4Y Y 1) Y2
( )

is 0 for all ¢+ > 0. Equivalently,

X X _ e¥ 1
€X+Y - 1 X + Y coeff of X2 N (eY — 1)2 Y2 ’
which is easily verified by dividing by X, differentiating with respect to X, and setting X = 0.

6.4.1 General tautological classes

We are not yet finished with the proof of Theorem 6.1 - so far, we have only verified that for pure
boundary strata corresponding to stable graphs I' with no automorphisms, the coefficients match
up on both sides.

First we discuss automorphisms. Let I, S C E(T") with |S| = m, and I" =T\ S be as above.
Let M be the set of 29 - g! different ways to add and label 2m legs to IV at the endpoints of the
edges in S. Previously the resulting 29 - g! stable graphs were all nonisomorphic (and all had trivial
automorphism group), but this is no longer true if Aut(I") is nontrivial. There is a natural action of
Aut(T") on M, and elements of M in the same orbit will correspond to isomorphic stable graphs.
Moreover, if I'” is one such stable graph then its automorphism group is isomorphic to the subgroup
of Aut(T") stabilizing the corresponding element of M. We can also see that |[Aut(I")| does not
depend on the choice of I'”. By the orbit-stabilizer theorem, the number of isomorphism classes of
stable graphs corresponding to elements of M is

[Aut(D)] 5
| Aut(I')]

This modified number precisely cancels the automorphism factors on the two sides of the desired
identity.

Finally, we need to discuss how to handle insertions of powers of 1 + 1)’ along edges. To check
that coefficients match up for tautological classes with these internal v classes, we replace I' with
semistable I’ as described at the end of Section 6.1. The proof that L(I') = R(T) (expressions
defined using (74) and (75)) goes through unchanged, so it remains to check that this identity is

indeed the equality of coefficients we want to prove to obtain Theorem 6.1. We have that L(T") is
the coefficient of

1 (—thn, — Py )%
|Aut(T)| H

(jf)* ]
e=(h,h")eE(T) (de +1)!

for some exponents d.. The other side requires more discussion - what happens when the set of
edges S C E (f) contains edges along the semistable portions of r?

Suppose a given edge e € E(I') was subdivided into m+1 edges ey, ..., em41 € E(f), ie. m=de.
Then the condition that the complement of S is connected implies that S contains at most one of
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the e;. Also, it is easily checked that altering S by replacing one of the e; by a different one does
not change the value of a term in (75). If we combine terms with S that are related in this way, we
get a factor of m + 1 and can reduce to a sum over S C E(I"), which are the actual edges appearing
in the gluing. We then get to choose powers of ¢ on the two sides of the glued edge. The factor of
m + 1 then corresponds to the identity

SR Ty e

m —i)! m!

1=0
6.4.2 A related lemma

We state and prove an identity that is closely related to Theorem 6.1 here. It will be used later in
Section 7.

Lemma 6.3. Let gon > 0. Let 5 : ﬂg—l,n+2 — ﬂg,n be the gluing map gluing the last two
markings. Then
]{2
(2[codim] — [deg])DRy(b;a) = j« —?DRg,l(b;a,k‘, —k)

k}d>—>Bd

On the left side, [codim] and [deg] are the derivations that act (respectively) by multiplication by
codimension and by multiplication by polynomial degree (in b, a;) on the appropriate graded pieces.
On the right side, the subscript indicates that powers of the formal variable k£ are replaced by the
corresponding Bernoulli numbers.

Proof. We follow the same proof strategy as for Theorem 6.1. Things are mostly directly analogous,
so we will only write down how the details change in a few key points.

Suppose we are checking that the coefficient of the pure boundary stratum (jr).l is equal
on the two sides, where I' is a stable graph with ¢ legs. On the left side, we have to apply the
derivation (2[codim| — [deg]) to C'(T"). Using Zagier’s formula for C(I") as in (74), we note that we
can move 2[codim] inside the brackets and replace it there with [deg,], the polynomial degree in the
2z variables. Then [deg,] — [deg,] annihilates the exp(a. rz.) factors, so we just need to let it act
on one of the other types of factor. In other words, the left side becomes

(~1)EOH ST S [T explaerz) | T ﬁ (Megz]m(%)

Ze, T Zf’T) -1
TCT f¢T ecT 23&7} coeff of []22,
{av}—{b,a:}

Meanwhile, the right side of the identity to be proved is similar to (76), but we make the following
changes:

e We only have |S| = m =1, so we will write S = f and replace the sums over m and S with a
sum over edges f, and write k in place of k1;

e We did not use the top degree version of DR, so the z.r in the denominator should be
exp(ze,r — 1);

e At the end we apply k% — —Bgy, instead of k% — ((—d — 1).
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The result is

> > ewaer=) | I o= | )

Ze,T)
TCI feE(M\E(T) |e€T e¢T coeff of []22,
e#f a0, ai, £k},
k‘ = — Bd+2

We then proceed as before and process the steps involving k. This involves the new computation

lexp(KT)]ars—p,,, = — ¥ —Epd
d

_ (AN T
- dr ) el —1°

After this the two sides of the identity are of the same shape but they just use different meromorphic
functions of z;y and z; 7, as before. If we let X = 2y and Y = 257 — 2y, then we end up just needing
to check that the coefficient of X2Y? in

d d X d\* Y
X—+Y —_— - X? — | ——
< ax " dY) eX+Y —1 ((dY) 6Y1>
is 0 for all ¢ > 0. This is easily done with a symbolic algebra package. O

6.5 Top degree part of the universal DR formula

The universal double ramification formula is used to compute the closure of the Abel-Jacobi section
on the universal Picard stack [8]. Let Pic,,, o denote the universal Picard stack of total degree 0
line bundles for €, , — M, (see Section 2.2). Let b € Z and let a = (ai,...,a,) € Z™ be a vector
of integers with Y | a; = b(29 — 2+ n). For r € Z>(, we denote by uniDRY ,.(b; a) the codimension
¢ component of the tautological class

= (Ts) , ;
Z |Aut(Ty)| JF‘S* [Hexp ( i+ GZSZ) H exp (—2%;_1,2(0) —bro,1 — 2/<;1>
I's5€Gy,n,0 eV (ls)
lUGWFé,,,

H Yn + Ywr

e=(h,h)EE(Ts)

1= exp (0 whwm)] -

in the operational Chow ring CHg,(PBic, ,, o). Here I's runs over all prestable graphs I' equipped
with arbitrary multidegrees 6 : V(I') — Z with sum 0. The weighting set Wr, , is defined in the
same way as the set Wr, used in the DR formula (Section 6.1), except that §(v) is added to the
right side of the vertex balancing condition.

For sufficiently large 7, this expression is polynomial in r. Let uniDR;(b; a) be the constant term
of this polynomial. We formally sum over ¢ to define the total uniDR cycle

unlDR ZunlDRc (b; a)

c>0

As in (67), we can factor this as uniDR, (b, a) = exp(uniDRDg(b; a))uniDRP,(b; a), where uniDRD,(b; a)
is a divisor given as a linear combination of the 1;,&;, and x; ; with i + j = 1.
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For a detailed discussion of the invariant properties of the universal double ramification cycle
formula, see [8, Section 7].
We consider the “multiplication by N” map

[N] : Bicy 0 — Bicg 0 (78)

A class a € CH*(Picy ,, o) has weight w if [N]*a = N for all N € Z. We define the subring

CH;ure ‘Btcg n 0 @ CH mlcg n 0) C CH* (g’plcg n, O)

w>0

generated by weight w classes. Compared to finite-type commutative group schemes (see Theorem
9.1), this inclusion is strict because PBicy ,, 0 is not finite type over My ;,. Nevertheless, the universal
double ramification formula lies in this subring.

Proposition 6.4. For any b € Z and a € Z" with )" | a; = (29 — 2 + n)b, the class uniDR{(b; a)
lies in CHE e (Picy 1 0)-

Proof. This is easily checked for the divisor class uniDRD,(b;a) - we have that v; has weight 0, &;
has weight 1, and &; ; has weight j. For the ”piecewise polynomial part” uniDRP(b;a), we just need
to check that the coefficient on the boundary stratum corresponding to a graph I" with multidegree
d (possibly with —i) — ¢’ decorations) depends polynomially on §. But this coefficient is just one of
the DR graph invariants C(G) of (69), evaluated at a, equal to —d(v) plus a linear combination of
b and the a;. Since C'(G) is polynomial in these inputs [62, 61], we are done. O

A simple case of Proposition 6.4 first appears in [9, Proposition 4.2]. By Proposition 6.4, we can
consider the following definition:

—~—20C
Definition 6.5. We define the top degree part uniDRg(b; a) as the sum over m of the weight 2c —m
part of the coefficient of monomials in b, a; of degree m.

In other words, we use the sum of the weight grading and the polynomial codimension grading
in b, a; to define the top degree part. It is easily checked that since C(G) has degree at most twice
the number of edges of G, the highest ”degree” we can get in this way in codimension ¢ is 2¢ (just

as it was for the top degree part of regular DR). We define the total top degree part uniDRy(b;a) by
summing over ¢ as usual.
For 1 < m < g, we consider the diagram

. .gm J .
Pictm I Picy .0
qgicg—m,n—i-Qm,O > Mg—m,n+2m > Mgn

by gluing the pairs of markings (n+1,n+2),..., (n+2m—1,n+2m). The right square is Cartesian.
Theorem 6.6. Let b € Z and a € Z" with ) ;" | a; = (29 — 2 + n)b. Then we have

uniDR( Z Z 2mm‘<Hk> Jm)«q unlDRg m(bya, ki, —ki, .. km, —km) .

m=0kq,....kLEZ

Here we use the negative zeta value regularization (71) on the right hand side, as in Theorem 6.1.
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Proof. The proof is nearly identical to that of Theorem 6.1 in the previous section. As before, the
exponential factor exp(uniDRDgy(b; a)) is of pure top degree (relative to its codimension) so we can
uniDRy(b; a) = exp(uniDRD,(b; a))uniDRP4(b; a).

We can again use the projection formula to cancel most of the exponential factors on both sides,
leaving only 11, ..., ¥niom (as before) and now also &,41, - .., &nt+2m- But the € classes appear as

factors of the form
exp(ki(En+2i-1 — &n+2i))-
Since these two £ classes become equal on applying ¢*, these factors vanish. The only change in the

remainder of the proof is that we subtract §(v) from the right side of the variable specialization
(70). O

We can lift Lemma 6.3 to uniDR in the same way. The only change required is that we must

replace [deg] with [deg] + [weight].

Lemma 6.7. Let g,n > 0. Then

]CQ
(2[codim] — [deg] — [weight])uniDRy(b;a) = (j1)«q" —?uniDRg_l(b;a,k, —k)

k‘dHBd

7 Forgetful pushforward of the DR formula

7.1 Statement of result

In this section we prove an identity satisfied by the pushforward of the DR formula along the forgetful
map 7 : My i1 — Mgy, forgetting the last marking.

Theorem 7.1. Let g,c,n > 0. Let

F =mDR{(b;ay,...,ant1) € CH Y (Myn) @0 Qlb,ay, ... ang1]/ (a1 + - +ans1 — (2g — 1+ n)b).
(a) F is a multiple of (a,1 — b)2.
(b) We have the identity

F -
{(aﬂ—b)z] = (g+1—-)DR; (bay,. .., an).
" An41:=b

To see that the statement of part (b) makes sense, note that setting a,+1 := b (i.e. quotienting
by an+1 — b) naturally induces a ring homomorphism

Qlb,a1,...,ant1]/(a1 4+ +apnt1—(29—1+n)b) = Q[b,aq,...,a,]/(a1+ - +an— (29 —2+n)b).

When ¢ > g, Theorem 7.1 is an easy consequence of the DR relations proved in [19], since then
both DRy (b; a1, ..., ant1) and (g +1 — c)DRgfl(b; ai,...,ap) vanish. But for ¢ < g, it gives a new
interpretation of the lower codimension parts of the DR formula, and this is the case we need in the
proof of Theorem 1.1. Of course, on the level of the strata algebra Theorem 7.1 is new for all c.

The proof of Theorem 7.1 is essentially just a lengthy computation. We break it up into
subsections as follows. In Section 7.2 we begin the proof and describe how to break the computation
of F into three parts. In the following three subsections we handle each of these parts in turn.
Finally, in Section 7.6 we state and prove a generalization of Theorem 7.1 to uniDR.

52



7.2 Setting up the computation

Although Theorem 7.1 is stated in pure codimension, it will be convenient to sum over ¢ and prove
that version instead. In other words, we want to prove that the total DR pushforward

7T*DRg(b7 ai, ... 7an+1)
is a multiple of (a,41 — b)? and that we have the identity

'/T*DRg(ba at, ..., an+1)

(an+1 —b)? ang1:=b

= (g — [codim])DRy(b; a1, . .., an), (79)

where the linear operator [codim]| acts by multiplying pure-dimensional cycles by their codimension.
We can merge these two goals into the single congruence

DRy (b;a1, ..., ant1) = (ant1 — b)*(g — [codim])DR, (b; a1, .. .,a,) (mod (ant1 —b)?).  (80)

Here we are abusing notation in a subtle way which we will now explain. The left side of the
congruence naturally belongs to the ring (let us call it R) of polynomials in b, a1, . .., an+1 modulo the
single relation (2g—2+4n+1)b = a1+- - -+an+1. But it does not make sense to write DRy (b; a1, ..., an)
in R, since the inputs to DR, then do not satisfy the relation (29 —2+n)b =a; +--- 4+ a, in
R. Note that this was not an issue with (79) because there we have set a,y1 := b. However,
the right side of (80) still makes sense if we use the facts that we are working mod (a1 — b)?
and that the problematic DR, factor is being multiplied by (a,+1 — b)2. In other words, we think
of DRy(b;ay,...,an) as belonging to R/(a,41 — b) and treat multiplication by (an41 — b)? as an
operator R/(any1 —b) = R/(an+1 — b)>.

Whenever we write DRy(b; ay, ..., a,) inside a congruence mod (an4+1 — b)? for the remainder of
this section, it will occur along with a factor of (a,.1 — b)? and should be interpreted via the above
procedure. Note that we have

(ant1 —b)’DRy(bar, . .., an) = (ant1 — b)*DRy(b; a1 + ant1 — b, ag, ..., an) (mod (any1 —b)%).

This is another way to interpret the notation; the choice of which a; to increase by a,+1 — b does
not affect the value of the expression mod (a1 — b)3.

We begin by rewriting both sides of (80) using the factorization DR = exp(DRD)DRP and
manipulating the exponential factors. Recall that

2 n+1 2
DRDg(b;al,...,anH :_751_’_2 zwz

Although the terms here are not equal to the pullbacks under « of the corresponding divisor classes
on My ,, we can write down the error terms:

DRDg(b;al,...,anH) =7* (—I‘&l—l-z Zi/h) n+1 wn-i-l'i‘z zn+17

where d; ,41 is the class of the boundary divisor where markings ¢ and n 4+ 1 come together and
bubble off.
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The projection formula then tells us that

v? " a?
m«DRy(b; a1, ..., apnt1) = exp —5H + Z} ?l%

aZ, —b? " a?
s lexp <+12¢n+1 + Z édi,n+1 DRPy(bsay,...,ant1)
i—1

Meanwhile, on the right side of (80) we can use the fact that [codim]| is a derivation to compute
that

(9 — [codim])DRy(b; a1, ..., a,) =
exp(DRDy(b; a1, ..., a,))(g — [codim] — DRDy(b; a1, ..., a,))DRP,(b; a1, ..., ay)

2
Using both of the last two equations, we can cancel a factor of exp(—%m +> 0, %M) from
both sides of (80) to get the equivalent congruence

T [exp ( il ¢n+1 + Z i n+1) DRPg(bS Ay, ... 7an+1)] = (81)
(ans1 — )% (g — [codim] — DRDg(b; ai,...,a,))DRPy(b;a1,...,a,) (mod (ami1 —b)?),

where again we should note that the DRD and DRP components of the expression on the right side
only make sense because we are multiplying them by (a1 — b)%.

The proof now is a matter of verifying (81) by carefully computing this pushforward modulo
(@ny1 — b)3. This can be expressed as a sum of three different types of terms via the identity

BB, o 2
exp #@brﬂrl + Z 55z‘,n+1 = | exp ¢n+1 -1 +Z exp | 5 —Oint1 | —1)+1,
i=1

which follows from the observation that the divisors appearing in the formula all have trivial
intersection with each other. In other words, we can either have a power of 1,1, a power of 6; 11
for some 1 < i < n, or neither.

It turns out that it is natural to group part of the pushforward 7,DRP4(b;a1,...,an+1) along
with the terms with a power of §;,41. For each 1 < i < n, let DRPg’nH)(b; ai,...,anp4+1) be the
sum of those terms in the DR formula sum (68) in which the graph I" has a genus 0 vertex v with
both legs i,n + 1, no other legs, and a single incident edge.

We now state the contributions of these three types of terms:

Lemma 7.2. We have the congruence

2
Ty |:<exp ( ntl 1/}”+1) — 1) DRPg(b, ai, ... ,an+1):| =

2

n b
(an—i-l — b)2 <g + 5 — [deg] + 2/<,1> DRPg(b, Ay, ... ,an)

+  (apt1—0b) ZaiDRPg(b; a1y .. Qi+ apt1 — b, ... a,) (mod (ant1 — b)S).
i=1
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Lemma 7.3. For each 1 <7 < n, we have the congruence

2 .
Ty [(exp <ai5i7n+1> — 1) DRPy(b;a1, ... ,ant1) + DRPS””'H)(I); A1y .y anﬂ)}

2

1 «a

2
(an—i-l - b)2 <_2 - 22%) DRPg(bS A1y.- ey an)

+  (@ny1 —b)(—a;)DRP,(b;ay, ..., a; + api1 — b, ... a,) (mod (any1 — b)?).

Lemma 7.4. We have the congruence

Tk [DRPg(b; A1y ey Upt1) — Z DRPg’”H)(b; ai,. .. ,an_,_l)] =
i=1
(ant1 — b)? ([deg] — [codim]) DRP,(b; a1, ...,a,) (mod (ani1 — b)?).

In the next three subsections we will prove these three lemmas. Adding Lemma 7.2, Lemma 7.3
(summing over i), and Lemma 7.4 then yields (81) and completes the proof of Theorem 7.1.

7.3 Proof of Lemma 7.2

We begin with the terms with a power of ¢,,11. Since CL?H_I — b? is a multiple of ant+1 — b and we
are working modulo (a,+1 — b)?, we only need to consider terms with an exponent of 1 or 2. The
pushforward then turns this power of ¥,,41 into kK9 = 2g, — 2 + n, or k1 (on the vertex where the
(n + 1)st leg was attached).

It is tempting to conclude that this kappa class factors out (since the leg could be placed on any
vertex) and that we are left with a kappa class times DRP4(b; a1, ..., ay). This will turn out to be
true when we started with 2, ;, but with ¢, it doesn’t even make sense because we do not have
the factor of (an4+1 — b)? needed to use DRPy(b;ay, ..., ay) (see the discussion after equation (80)).

So we need to be more careful with this type of computation. Let I" be a stable graph for Mg,w
For simplicity we will assume that I has no automorphisms and we do not worry about internal
insertions - those details can be handled as in Section 6.4.1 (though things are even simpler here
since we do not have gluing maps to worry about). Recall that the coefficient of the boundary
stratum (jr)«1 in DRPy(b; a1, ..., ay) is given by the graph invariant polynomial C(I')({a,}) after
applying the specialization of variables (70).

For each vertex w € V(I'), let T, be the stable graph for Mgm,_'_l given by attaching leg n + 1
at w. Then we have that the coefficient of (jr, ).l in DRP,4(b;a1,...,an+1) is again given by a
specialization of the same C(I')({a,}). One way to describe the altered specialization in I, as
opposed to I' is that first we replace a,, with a, + an+1 — b and then we perform the previous
specialization. This motivates the following notation (to be used only in this section): let T' be a
formal variable (later to be set to a,+1 — b) and then given a vertex w € V(I'), let

Pu = PulT, {au}) = [y, ir € AT}/ ([ T+ D @ (s2)

veV(G)

Also, for 1 <7 <n, let P; := P,,, where w; is the vertex where leg 7 is located. All the different P,,
become equal to C'(T") on setting 7" := 0, so in particular they are all congruent mod 7T'.

We now return to the question of computing the pushforward of the ¢/, terms. For ¢2_,, we
have that the coefficient of the class corresponding to I' with x; at vertex w is

1 afl —b? 2 (a% —b%)?
coeff(ji), ki w) <7T* [2 <+12¢n+1) DRP(b; ala'--’anJrl)]) = %[Pw]n{av}%{ai},
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where the subscript indicates that we apply T' := a,4+1 — b as well as the standard specialization
(70).

Because this term is divisible by (a,+1 —b)?, the dependence on w disappears modulo (a1 — b)3.
We can collect these terms for different I' and w and factor out the x1 to get (mod (a,41 — b)?) a

contribution of )

b
(Ang1 — b)%mDRPg(b; A1y . e ey lp). (83)

This is part of the right side of Lemma 7.2.
For 1} 41, things are very similar. The differences are that we do not have divisibility by
(@ny1 — b)?, but we do have that ro[w] = 2g,, — 2 + ny, is a scalar. We get

Coeﬁ'(jr)*l (71'* |:< n+1 wnJrl) DRPg(b; (05 an+1):|> =

az, | — 1)2
Y (200 — 2+ 1) Pl T {au sty {as) - (84)
weV ()

It turns out that we want to break this into two terms using

a —b? ant1 —b)?
+12 = ( +12 ) + (an+1 — b)b.

The first term created in this way is then divisible by (an41 — b)?, so again we can combine terms
with different w. Since

Z (290w —2+ny)=29—2+n
weV (T)

is independent of w, we end up with a contribution of
(anJrl - b)2
2

towards the right side of Lemma 7.2.
The second term is more complicated because we only have a factor of a1 — b, not (an+1 — b)2.
We use the following lemma:

(29 — 2+ n)DRP,(b; ay, . . ., an) (85)

Lemma 7.5. Let Py, P; be defined in terms of C'(T") by (82). Then

(an—i-l_b) Z (2gw_2+nwb P Zaz 7

weV (T) T {av}—b{a1,....an}

(ant1 = 0)*(1 = [deg)[C(D){ay}sbiar,man}  (mOd (ans1 —b)?).

Proof. Recall the formula for a,, in the specialization (70). If we combine the sum over w with the
sum over ¢ and pull out a negative sign, we can rewrite the left side as

~(ans1 =) | D awPu . (86)
wev(T) T {ay}b,{a1,....an}
We need to do a little algebra with Taylor polynomials now. Note that the formal identity
feytn=frtp et (- D) )@ty (modr)
= —_——— o
T,y €z Y dy  dr T Y m
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holds for any polynomial f(z,y) by expanding both sides as Taylor series in ¢. Applying this to the
polynomial f = C(I") with = ay,,y = ay,t = T gives the identity

d d
Po=P1+T [( - > C(F)} (mod T?).
day  day, Qwy —aw; +T

Applying this identity to replace all the P,, with Py in (86), we get (mod (a,+1 — b)?)):

- (an—H - b) Z ay | P1

wEV(F) T,{av}’—)b,{al,--~7an}
0| Y a (dd - )c(r)
wev () v e g +T.

T {av}=b{a1,...an}

On the first line, the sum of a,, is equal to —7 so this line simplifies to

(@ns1 = 0)% P17 fauysb far.an) - (87)

On the second line, the sum of a,, inside the brackets is equal to 0 (since it is before the change of
variables introducing 7) so the terms with (d/da,, ) cancel. Also, we can write

> a0~ paegor)
weV(T) w

where [deg] is the operator that multiplies a homogeneous polynomial by its degree, so the second
line becomes simply

—(an+1 = 0)*[deg] P17t 1ot far..an} - (88)
Since both (87) and (88) have a factor of (a,+1 — b)?, we can replace P; with C(I') and add them
to get the right side of the lemma. O

We now apply Lemma 7.5 to complete the proof of Lemma 7.2. The remaining contribution we
had to analyze had coefficient

(an+1 =)0 Y (290 — 2+ 1) [Pulr (0, obfa)
weV (T)

(on the class of the boundary stratum corresponding to I'). By Lemma 7.5, we can replace this with

(ant1 =) D ailPirfauiosbiast + (@nt1 — 5)*(1 = [deg])[C M) ay st far,.an}-
weV (T)

But these terms can easily be summed over I' and rewritten in terms of DRP,. The result is

(an1 —b) > aiDRPy(biay, ... a; + ans1 = b,...,an) + (ang1 — b)*(1 — [deg])DRPy (b ay, . .., ap).
=1

Adding this to (83) and (85) gives the right side of Lemma 7.2.
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7.4 Proof of Lemma 7.3

We now move on to the term with a power of §; 41 (for a single fixed 1 < i < n): we wish to

compute
a?
Ty [(exp <2l5i,n+1> — 1> DRPg(b; at, ... ,an+1) .

Let ¢ : ﬂg,n — Mg,n+1 be the map corresponding to the boundary divisor d; .41, i.e. we glue a
rational bubble to the ith marking and place markings ¢« and n + 1 on the bubble. The projection
formula (along with 7o+ = id and the standard formula for the normal bundle of a boundary divisor)

then gives that
k+1 k *
W*(f%,:fﬂa) = ()"

for any class a € CH* (M, 41).
Since DR cycles pull back to DR cycles along gluing maps at separating nodes, we can compute

U'DRPy(bsay, ... ant1) = exp(DRDy(b; a1, ..., a; + ant1 =0, ...,an) — t"DRDg(b; a1, . .., ant1))
: DRPg(b;ala"°7ai+an+1 *b,...,an)

7 n _bz
:exp((a +a2+1 ) 1/%) DRPy(b;a1,...,a; + anp1 — b, ..., an).

Combining these equations, we have that

2
Ty KGXP <6’;5i,n+1> - 1> DRP,(b; a1, . . . 7an+1)]

a?
_ P <_7Z¢i> ! oy [ (@ ang1 = b)°
a —i P 2

This looks a little worrying - we have high powers of v;, but the right side of Lemma 7.3 only
allows a single 1;. However, this is why we include in Lemma 7.3 the additional terms with no d; 41
but where the DRP, factor uses a graph with a similar shape, with legs 7 and n 4 1 bubbled off.

Such stable graphs for M, ,11 are in bijection with all stable graphs for M,,. Let I" be the
stable graph on Mg,n, i.e. the one obtained after forgetting leg n + 1 and contracting the resulting
unstable component. Then the DR formula gives that the pushforward of these terms is

1/11> DRPy(b;a1,...,a;i + ant1 — b, ..., an).

1—exp (4(“i+an2+1—b)2
i

Adding this to the previous expression, we get

(45
) DRPg(bﬂlla'-- N +an+1 — b,.. . ,(In).

(a;+ans+1—b)2 —a?

1—exp< 5
(25

Since (a; + ant1 — b)? — a? is divisible by a1 — b, terms with a high power of 1; will vanish modulo
(@ny1 — b)3. We are left with

o)
DRPy(b;a1,...,a; +ant1 —b,...,an).

2

CLZ2 — (ai + An+1 — b)
2
—((ai + ap+1 — b)2 — a?
8

2
DRPg(b;al,...,ai +apy1— b, ... ,an)

2
+ ) YiDRPy(b;a1,...,a; + ant1 — b, ..., an).
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The second line is a multiple of (a,11 — b)?. After reducing modulo (a,+1 — b)® it becomes

(an41 —b)? <2Z¢z> DRPy(b; a1, ..., a,),

which is part of the right side of Lemma 7.3.
We split the first line into a sum of two terms using
a? — (ai + ap+t1 — b)2 B (an+1 — b>2

9 = — 9 - (an+1 — b)ai.

This gives the remaining components of the right side of Lemma 7.3 (since in the first term we have
a factor of (a,41 — b)? so can change a; + a,+1 — b back to a;).

7.5 Proof of Lemma 7.4
What remains is to compute the part of
T«DRPy(b;ai,. .., any1)

that does not involve popping a rational bubble containing leg n + 1 and one other leg.

There are two different things that can happen with this pushforward. The first is that leg
n + 1 is on a vertex that becomes unstable without that leg. Since we’ve already considered the
case in which this happens with another leg present, this means it has two incident edges. In other
words, we are popping a rational bubble formed by leg n 4+ 1 moving into a node. In the other case,
the graph remains stable without leg n + 1. The pushforward is then computed by decreasing the
exponent of ¥ along one incident half-edge.

We group terms together based on the stable graph I" for Mg,n (given after possibly stabilizing
by popping a rational bubble) along with a chosen edge f € E(T") (either the node where the rational
bubble was located or the edge along which the exponent of a v class was decremented. Thus after
picking I and f there are three possibilities for the starting stable graph I for ﬂg’n_i_l that we are
grouping together - either the edge is subdivided with a genus 0 vertex and leg n + 1 is placed there,
or leg n + 1 is placed on one of the two endpoints of the edge.

We now consider the DR formula for these terms. Let r > 0 be a positive integer. Then we
want to sum over half-edge weightings w : H(I') — {0,...,r — 1} satisfying certain congruence
conditions mod r. Although the graph I and the precise congruence conditions vary in the three
cases described above, there are bijections between the weighting sets W in the different cases that
keep things unchanged away from the edge f (or its subdivision). We show the effects of these
bijections on the weights near the edge f below. Here T := a, 11 — b, A is an arbitrary integer, and
the weights should all be interpreted mod r.

An+1 An+1 an+1

A A-T A A-T
—-A T—-A —A T—-A

We now simply add up the pushforwards of these three types of term, with corresponding weights
grouped together. The result is something that looks a lot like the formula for DRP,(b; a1, ..., ay),
but with the factor for edge f changed:

1= exp (200 (g, + )
Y+ hw

rihl (F)

I'€Gy.n weW \e=(h,h')#fEE(T)
feE(T)

QA T,r)

r=0
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where Aut(I', f) is the stabilizer of f in Aut(I"), A is the value of w on one of the two half-edges
in f (chosen arbitrarily), W is a suitable set of weightings, and Q(A,T,r) is a somewhat messy
function of A, T, r (with values that are power series in 1,1’ on the two halves of f).

To write down @, it will be convenient to let [z], for an integer x denote the unique integer
between 0 and r — 1 congruent to x (mod r). Also, to save writing we will replace w(h') with —w(h)
in the DR formula - this will not affect the result at the end after taking the 0 coefficient. We can
then take

72 2
' exp (4 W+ 1)) + (0 + v exp (5w + £07) —pexp (U5 + )
Y'Y + )
Here the ¢ and v’ in the denominator come from the terms where the pushforward decrements the
exponent of ¢ or ¢,

Let Q(A,T,r) be the same expression with the instances of [A — T, replaced by A — T'. Then
expanding in T gives (after a straightforward calculus computation) that

QA T,r) =

2

2

Qatn) =1 (S ew (G +e)) ) + o),

Since we will set T' := a,,4+1 — b and work modulo (ay,+1 — b)3, this means that if we were using @
instead of Q, we would get a contribution divisible by (a,+1 — b)%2. Moreover, note that

— A2

1—exp (41w + )
. .

Y+

Since each edge also contributes 1 to the codim after applying (jr)., this means that we would get
precisely

exp (g (64 4)) = 1+ codim)

(ans1 — b)% - [codim]DRPy(b; a1, - . ., ay). (89)

It remains to compute the above contribution using Q(A,T,r) — Q(A, T, r) instead of Q(A,T,r).
We may assume that r > T > 0; then Q(A,T,r) — @(A,T,r) vanishes for T < A < r and agrees
with a formal power series in 1,1’ with coefficients that are polynomials in A,T,r for 0 < A < T.
Call this power series Q. Explicitly, we have

Q. 1) = ot (o (BT R4 0) - e (U5 w4 0))
2 (o () o (522

We wish to compute

_hl(r\) 1 —exp (_w(h)w(hl) (¢h _|_ ¢h’))
r 2 ey
E ir) s E | | AT, r
e |Aut(T, f)] (ir) [ vy ()£ fEB(T) Yy, + Yy Q )
g,n e=h,
FEE(T) 0=A<T r=0

If f is a separating edge, then A is uniquely determined by the balancing conditions on w and
the factor () comes out of the sum over w. The sum over w is then just the product of the sums
appearing in the DR formula for the two connected components formed by cutting the separating
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edge f. In particular, it is polynomial in r for r sufficiently large and divisible by rh (@) Since Q is
divisible by r, the r = 0 specialization then vanishes.

So we can replace the sum over f with a sum over non-separating edges f. In this case, we can
factor the sum over w by first summing over A:

Z Tz:l ) () Z H I —exp <—%w(h/)(¢h + wh'))
TA oy I

I“eGg’n k=0 |Aut(F7 f)| weW e:(h,h’);éfGE(F) ¢h + T,ZJh/

fEE(F)nonsep A=k

Qk,T,7)

But the subset {w € W | A = k} is naturally in bijection with the set of balanced weightings for
the graph I formed by deleting edge f, attaching a new leg at each endpoint of f, and appending
weights k, —k to the vector a. So we have the DRP formula for I, but we have the extra factor
Q(k,T,r). We also have an extra factor of r—! since h'(I") = h!(T') — 1. Fortunately, Q(k,T,r) is
divisible by r, so we get that the expression inside the sum over k is at least a polynomial in r (for
r sufficiently large).

We can modify Q/r by any multiple of 7 without changing the resulting r > 0 specialization
(the taking of which commutes with summing over k). We can also modify it by any multiple of T2
without changing the final result (mod (a,;1 — b)?), since the sum over k gives an extra factor of T'.
A simple calculus computation gives that

Qk,T.7)

r

2
= k?exp <I;(@ZJ + 1//)) T (mod (r,T?)).

Note that

k2 i
E(wn—&-l + ¢n+2) = DRDg—l(b§ a,...,an,k, _k) —J DRDg(b§ Ay, ... 7an)a

where j is the map gluing the last two markings. We can then rewrite our expression (using the
projection formula) as

~
_

! K DR,_1(b k,—k)
T - Jx g—1\0;a1,...,0n, K, =K).
T ‘ 2

T? exp(—DRD,(b; a1, ..., an))

e
i

Here the factor of % comes from the choice of labels of legs n 4+ 1 and n + 2 after cutting I' at f.
Since the coefficient of 7! in Eg;& k%2 is precisely the Bernoulli number Bgo, this gives the
negative of the right side of Lemma 6.3 (times 7, mod T3, with the exponential factor removed).

Therefore it is equal to
(ans1 — b)?*([deg] — 2[codim])DRP,(b; a).

When combined with the earlier contribution (89) in this section, we get the right side of Lemma 7.4.
This completes the proof of Lemma 7.4 (and thus also Theorem 7.1).

7.6 Extension to uniDR

As in Section 6.5, we generalize the pushforward identity Theorem 7.1 to the context of uniDR. One
complication that arises here is that compared with mg,m the forgetful morphism Bic, , 1 — Picy,,
is not proper. There are actually two separate things that go wrong. The first is that the forgetful
morphism for stacks of prestable curves M, ,+1 — My, is already not proper. We address this by
using curves with valuation in a semigroup, following [11, Section 2.2].
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Consider the semi-group A = {0,1} and consider the moduli stack of .A-valued prestable curves
My .n,1- These are prestable curves with an additional choice of element a, € A for every vertex v,
such that every vertex with a, = 0 satisfies the usual stability condition. The universal curve is
denoted p : €41 — My pn1. By [11, Proposition 2.6], the morphism My, 41,1 — My pn,1 forgetting
the last marking can be identified with the universal curve. Let F': 9,1 — 9y, be the morphism
forgetting the A-valuation.

Let Pic, ,, 1,0 — Mg n1 be the universal degree 0 Picard stack for the family €, 1/Mgn 1. Let
P €yn1 — Picy 10 be the pullback of the universal curve and let £ be the universal line bundle
on €y 1. Then tuple (€g,1/FPic, 1,0, L) defines a uniDR formula uniDRy 1(b;a) € CH*(Bic, ,, 1 0)-
This uniDR formula looks just like the standard uniDR formula, i.e. it is blind to the A-valuation in
the following sense:

Lemma 7.6. Let F' : Picy , 19 — Picy ,, o be the morphism forgetting the A-valuation. Then
F*uniDRy(b; a) = uniDRy 1(b; a).

Proof. For the forgetful morphism F': 9, 1 — My, the pullback of the universal curve €, ,, —
My along F is the universal curve €, ,, 1. Therefore, the same holds for F': Pic, ,, 1 o — Picy,, o-
Moreover, the universal line bundle on €, 1 is the pullback of the universal line bundle on &, ,, so
the uniDR cycle formula on Pic, ,, , pulls back to the uniDR cycle formula for Bic, , 1 o- O

However, now we come to our second problem: there is no forgetful map from JPicy 111 to
Bic, n.1,0- The issue is that we might need to contract a component of the curve on which we have
a nontrivial line bundle. We address this by using an open substack ‘Bic;m +1,1,0 that does admit a
proper forgetful map to Bic, , 1 . This is simply the open substack determined by the condition
that if the underlying curve is such that forgetting marking n + 1 would make a component unstable,
then the line bundle must be trivial on that component (which is necessarily genus 0). Equivalently,
we can construct ‘Bic;m +1,1,0 by pulling back the forgetful map on A-valued prestable curves, as
follows.

We consider the fiber product

. P .
mlcg,n—&—l,l,O g’plcg:”:lvo

| !

Mg nr1,1 — Mgna.

By [11, eq. (22)], there exists a diagram

r /
thanrl’]- Q:g,n,l Q:gvnz]-

| |

. P .
‘B‘qu,nHJ,o — mlcg,n,l,O

where the square is the fiber product and r is the canonical map which is proper birational. The
tuple (€gnr1,1/FPicy 411,057 L) defines a uniDR formula

uniDR}, ; (b;a) € CH*(Picy, ,,11.1.0)-

We can now push forward uniDR’g’:l along p and compare the result with uniDRy 1, lifting Theorem
7.1:
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Theorem 7.7. Let g,c,n > 0. Let

F = p,uniDRYy (b;ay, ..., ant1) € CHC*I(‘Bicgm,LO)@QQ[b, aty ..., ant1)/(a1+ - +ans1—(29—1+n)d).
(a) F is a multiple of (a,1 — b)2.
(b) We have the identity

F -
[(aﬂ_by] = (941 —cuniDRS S (bian, ..., an).
" an41:=b

Proof. We use the same proof strategy as before, noting only the changes that happen with uniDR.
As before, we begin by canceling exponential factors as much as possible using the projection formula
— this step requires pulling back uniDRD along the forgetful map. The exponential factor in (81) now
includes an additional term:

(an—i-l - b)gn-i-l .

There are no changes to the right side other than having extra terms &;, k0,1, —1,2 inside the divisor
uniDRD.

We again divide the computation into the same three pieces as before, with the only difference
being that each now carries an additional factor of exp((ant+1 — b)&nt1)-

7.6.1 Changes in Section 7.3

Here, where we have a power of 9,11, there are two places where things change. The first is that
we get an additional term with pushing forward ,41&,+1 (which produces a kg 1[v] on the vertex
where leg n + 1 is attached). Since this term is divisible by (a,41 + b)?, computing its contribution
is easy - we get precisely

(an+1 — b)leioyluniDRPg(b; at, ... ,an),

which accounts for the new xo 1 term in the uniDRD factor.

Second, Lemma 7.5 requires changes because the specialization (70) used to write a,, in terms
of b, a; now also includes the term —d(w). This means that the left side of Lemma 7.5 must include
+ 3., 0(w)Py, inside the brackets, while on the right side [deg] must be replaced by [deg] + [weight]
(since the degree of C'(I') in the a, variables corresponds to the mixed degree of uniDRP in the
b,a;,d(v) variables and the weight in uniDRP is the degree in the §(v) variables). Both of these
changes produce additional contributions which will be exactly canceled out by changes described
in Section 7.6.3 below.

7.6.2 Changes in Section 7.4

The first thing to note here is that the correct analogue of DRPéi’nH)(b; ai,...,any1) for uniDR’
is to require that the rational bubble containing legs i,n + 1 must also have A-valuation 0 (which
then also implies that it has §(v) = 0). The boundary strata of Bic; ., 1 o with this property are
in bijection with the boundary strata of Pic, ,, 1 ¢, as desired.

Then in both types of terms in this section, the &,41 exponential just factors out to become an
exponential of &; after the pushforward. Since positive powers of &, 11 come with factors of a,+1 — b,
the only new thing that we get (mod (an+1 — b)%) comes from the part of the previous result that
was not yet divisible by (a, 41 — b)? (the final line of Lemma 7.3). So the new contribution is

(an+1 — b)(—ai)(exp((ant1 — b)&) — 1)uniDRPy(b; a1, ..., a; + any1 — b, ..., an).
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Reducing mod (a,+1 — b)? gives us

n

—(@py1 — b)? Z a;&uniDRPy(b; a1, ..., a,),
i=1

which accounts for the new &; term in the uniDRD factor.

7.6.3 Changes in Section 7.5

Here there are multiple new things that happen. One thing that happens is that we are no longer
just decrementing an incident v exponent when the vertex remains stable - we also need to handle
the £ exponent. In other words, we need to know the formula for

T (G a1 ).

Using the relation v¢; = 7*1); + d; 41 and applying the projection formula, we find that two types
of terms arise: either we replace the & 41 by K_1,4[v], or we decrement one of the ) exponents and
convert &,41 into a corresponding &;.

In the first case, we must have ¢ < 2 in order to obtain a nontrivial contribution, since for i > 2
the expression is divisible by (an+1 — b)®. When i = 1, we use the identity £_11[v] = §(v), which
precisely cancels one of the changes involving §(w)P,, from Section 7.6.1. When i = 2, the extra
factor of (a,+1 — b) allows us to combine terms across different vertices v, and factor out a global
k—1,2 term. This yields

(ans1 — b)Q%uniDRPg(b; ai, ... an),

which accounts for the new x_1 2 term in the uniDRD factor.

In the second case, we just get the same thing as before except with an extra power of £ along
the edge f. We also just get an extra power of £ when pushing forward a class on a graph that
requires restabilization. Thus, the & factors out of all such terms, and any term involving a positive
power of £ vanishes due to the presence of an extra factor of (an4+1 — b).

The final change that happens is that we replace Lemma 6.3 with Lemma 6.7. This just means
that we are replacing [deg| with [deg] + [weight], which cancels out with the previous time when we
did this (in Section 7.6.1). O

8 Fourier transform and pushforward

8.1 Leading term of the Fourier transform

Let € be a small stability condition (i.e. such that the trivial line bundle is ey-stable) and let € be
any nondegenerate stability condition. By Theorem 5.1, we have a Fourier transform

Sy o CH*(T;,,) =+ CH*(T3,) . (90)
Since ¢ is small, we have the unit section e : B — j;?n.

Proposition 8.1. For a nondegenerate stability condition ¢ and a small nondegenerate stability

condition €, let § be the Fourier transform (90). For any a € CH*(J we have

€
g,n)’

() = €"Fg()
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Proof. Let m : jg) — Jg and 7o : jg) — J¢ be the two projections. Consider the following
diagram

To —45 19

lﬁ l” (91)

e €0
B —— Jgo,

where 7o, 7 are flat by Proposition 3.9, and € is the map induced by id X e. Since e : B — TCO factors
through J¢?, the fiber product is isomorphic to J 2’ Therefore, since e is a regular embedding, we
have

e*Fy(a) = " (ma)u (i ()td(~ Ty, 7.)7(P))
= & (w(a)Wd(~ Ty, 7,)7(P))

JexpJe

= m. (@ U ch(€P)) = mu(a)

where the second follows from the base change formula applied to (91) and the last equality follows
from the Todd class calculation in the proof of Proposition 5.2 and ¢*P = O. O

The same argument implies 7.(a) = €*Fy(a), which will be used later.
We state a consequence of [8]. This formula will serve as the first step in computing the Fourier
transform using the universal DR cycle formula. Let ¢ : J ;’n — *Bic, ,, be the morphism (10).

Proposition 8.2. Let b € Z and a € Z" with )" ; a; = (29 — 2 + n)b. For any nondegenerate
stability condition e of degree 0, we have

(alysa)+[Bfia] = uniDRY(b:a) |5 € CHY(J,,) -

Proof. We consider the Abel-Jacobi map for the universal Picard stack [8, (3.1)]:

n
AJb;a : mgm — ‘,Bicgm, (C, L1y a;n) — wgl_olzg(z aixi) .
=1

Consider the schematic image AJpa C Picy,, which is the smallest closed reduced substack through
which AJy,, factors. Since By, is irreducible and proper, the image im(ajj,) is a closed irreducible

subset of 7;71. Both aj,,, and AJp;, agree over the locus where the underlying curve is smooth, so we
have ajy,, = ¢~ 1(AJya). Since ¢ is smooth, ¢=1(Aly,) = ¢! (AJy,) by [63, 081I]. Therefore we get

im(ajy,) = ¢ (Adya) (92)

We compare (92) with the universal DR cycle formula. Since ¢ is smooth (Lemma 2.2), by [8,
Theorem 0.7], we have
uniDRY (b;a)[5: = [¢™" (Adya)].

Since morphism ajy,, : By, — im(ajy;,) is birational, (ajy,)«[By,,] = [im(ajy,,)]. Therefore, we have

(apya)«[B5a] = [im(ajya)] = [p7! (Adpa)] = uniDR(b;a) 5 - =

When e is small, Proposition 8.2 follows from [18, Theorem b].

We compute the lowest codimension nontrivial term of the Fourier transform up to codimension
g, which will be the main input to prove Theorem 1.1. For a class x € CH*(JgQ,n), [%]codim=c denotes
the codimension ¢ part.
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Theorem 8.3. For a nondegenerate stability condition € on M, ,,, we consider the partial Fourier
transform §5 := ch(PY) : CH* (J n) — CH*(Jg n). Letb € Zanda € Z" with Y " | a; = (2g—2+n)b.

(a) If ¢ < g, then [SZ(exp(—bFaoJ +> 0 aifi))]ccdim:c =0.

(b) If ¢ = g, then [F (exp(—bro,1 + Y iy ai&i))] 1)9 - uniDR. (03 a)\

codim=g ( '

Proof. First, we collect the relevant results from previous sections. Let ¢y be a small stability
condition and let §, : CH* (J n) — CH* (J ») be the Fourier transform. By Proposition 5.8, the
Fourier transform of the resolved Abel-Jacobi section has the form

Sg([ajb;a]) = exp(—brp,1 + Z ai&i) (1 + Ypa) ,
=1

where v, € PP(J

.. 0 .
Fourier transform %'g and restricting to Jg,, we obtain

gn) is a class supported away from the integral locus. By taking the inverse

n
el = F5 " (exp(~bros + Y ai)(1+ 7)) (93)
i=1
Using Propositions 4.6, 5.9 and 5.12, the right-hand side of (93) can be expressed as

(=1)7- SZ(GXP(—b/io,l + Z a;&;)(1 + %;a))

g
G
h=1

h oo kBka%_l—FB%_l
h'2h ]h*qhgg h(exp( b/{()l—l-Zal& + Vb:a) HZ ot B )
i=1 =1 k;=1 ¢ v

(94)

Below, we use (94) to match the recursive structure of uniDRY(b;a) (Theorem 6.6) and the recursive
structure of Fourier transform (Theorem 5.11).

(a) We prove the statement by double induction on the genus g and the codimension ¢. For
the base case g = 0, there is nothing to prove. Now assume the statement holds for all genera less
than g, and proceed by (finite) induction on the codimension ¢. Let ¢ < g, and assume that the
statement holds for all codimensions less than c.

Taking the codimension ¢ part of (93), the left hand side is zero. On the right hand side, we
apply Theorem 5.11 to simplify the term +,., as follows. Write v;., as a linear combination of
tautological classes of the form [fg, Yo]. As in the proof of Theorem 5.11, we express 7y, as the
pushforward of tautological classes from compactified Jacobians of the form Jr, — Mr (see (64)).
By Proposition 5.8, the class 7., is supported away from the integral locus. Therefore, the stratum
Mrp — Mg h,n+2h is nontrivial, and the Chern classes of the normal bundle can be written in terms
of 1- and ¢-classes at the additional markings on Jr;,. Hence, we have

[3; ( eXp(—b/io,lJrzn: ai&i)-[T5, ’YOD]
=1

codim=c—h

(95)

codim=c

= Jh«q, [32% ( exp(—bro,1 +zn: ai&i) (Jrs)« (%)ﬂ
i=1

for some h < g and some 7y € CH*(Jr,).
We show that (95) vanishes when I' is nontrivial. The class 7y can be expressed as a polynomial
in 1-classes at half-edges and £-classes only at the markings. For monomials in 1-classes, we apply
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(65) to rewrite them as ¢-monomials pulled back from Mr, plus additional terms supported on
boundary strata of Jr; corresponding to unstable vertices. By the argument above, the contribution
of these additional terms can be written as Fourier transforms of lower genus. Hence, by the
induction hypothesis, their contribution to (95) vanishes.

For the leading term, we write 9 = 7{, - 7*(7(), where 4, is a monomial in &-classes and 7 is a
monomial in 1/-classes on Mr. By Proposition 5.13 in the case h!(I') = 0, and by Corollary 5.19
when h!(T') > 0, together with the projection formula, we obtain

n
Son(exp(—bros + > i) (v, )« (50)) = (o) (36 [T Fg(Eo- )
i=1 veV(T)
where =, is some monomials in { and kg1 classes and «, is some class in PP(J ((U)) (U)).
If o, is nontrivial, then by the induction hypothesis the associated contribution to (95) vanishes.
If instead «, =1 for all v € V(I'), the class inside 3;(1)) remains a polynomial in §- and kg 1-classes.
In this case, the codimension ¢ — h — deg(yy) — [E(I')| part of [[,cy () So0) (Z,) contributes to the
codimension ¢ — h part of (95). Since I' is nontrivial, we have |E(I')| > 0, and thus the codimension
¢ — h part vanishes by the induction hypothesis. Therefore, (95) vanishes.
By the above argument, the codimension ¢ part of the right hand side of (93) reduces to the
codimension ¢ part of (94), with the following simplification:

[(—1)932 ( exp(—bko,1 + z”: ai&))] codime
=1

N LT qyamhge - T (DM By o
+ Z ion e h [(—1) Sg,h(exp(—bkao@ + Z a;i&) (1 + Ypa) H Z (2! P )} I
i—1 i=1 k=1

h=1

By Proposition 4.6 and 5.8, 7.2 and o, 8; can be expressed as polynomials in the 1; and &; classes.
Since 3;7 ;, is linear on the base, we can factor out the 1)-classes. By the induction hypothesis, the
second term vanishes. Thus, for ¢ < g, we conclude:

[3;(€XP(—5"6071 + Z ai&i))lcodim=c = 0,
i=1

which completes the proof of part (a).
(b) We prove part (b) by induction on the genus. Assume the statement holds for all genera less
than g. Taking the codimension g part of (93), Proposition 8.2 implies:
[ajb.a]\Jg = uniDRY (b; a)] . (96)
’ g,n \n
By the argument in part (a), the contribution involving the class 7y, lies in codimension greater

than g. Therefore, by the vanishing result of part (a), the codimension g part of the right hand side
of equation (94) simplifies to:

[(—1)932 ( exp(—bro,1 + Zﬁb: aifi))]

codim=g
9. & B
. * — o 2]45 !/ 2]%72
+ ; TighJhxdh [(—1)9 "Fo h(exp —bro1 + Z ai&;) 11_11 kz:l (2k; —1)(& — &) )LOdim:g_h :
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By the induction hypothesis, each lower-genus term becomes:

h

[(—1)97h32_h<exp —bro,1 + Zalg H Z B% (2k; — 1)(& — 51{)2@72)}

=1 ki1 codim=g—h

/.x_/g—h
= > (Hki)umDRg_h’th(b;a,kzl,—k:l,...,k:h,—kh).
ki,....,kn€Z i=1

Here, the infinite sum is interpreted using the (-function renormalization defined in (71). Finally,
by Theorem 6.6, the codimension g part of the leading term of (94) becomes:

[(—1)9 . g;(exp(—b/igi + Z aigi))]codim:g = Lmz(b; a)
=1

which completes the proof of (b). O

8.2 Proof of Theorem 1.1

We finally finish the proof of our main theorem.

Proof of Theorem 1.1. We finally finish the proof of our main theorem. We will induct on ¢, the
exponent of ©. We save the base case £ = 0 for the end, so first assume ¢ > 0. We are given
€, a nondegenerate stability condition for My,. Let p : Mynt1 — M,, be the morphism
forgetting the last marking. The pullback of € to M, ,+1 is degenerate. However, there exists a
small perturbation ¢ which is a nondegenerate stability condition for M 11 such that there is a

morphism gq : j;n = j;n and the following commutative diagram holds:

Consider the class (on Mg ,41)

Pe(bya, ant1) = (1)«

n+1
o1 exp <—b/10,1 + Z ai&)] ,
codim g+c

1=2

viewed as a polynomial in b, as, ..., apt1.
By the inductive hypothesis, P¢(b;a, a,+1) = 0 for ¢ < g — £ + 1, is tautological for all ¢, and for
¢ =g —{+ 1 we have the formula

PI~H (b2, ap11) = (—1)7 (€ — 1)1 - DRI (b, 2, an41). (97)
Now consider applying ps. Applying p. o (m1)« = 7« 0 g«, the projection formula for ¢, as well as the

identity p*ko,1 = Ko,1 — §nt1, We get

P« PE(bsa, apg1) = s

0 exp <—bf€0,1 + Z az’fz’) - pxexp((an+41 — 0)&nt1)

=2 codim g+c—1
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Since p. (&, +1) = 0 for 7 < 2, this pushforward is divisible by (an4+1 — b)2. Moreover, if we divide by
(ant1 — b)? and then set a,11 := b, the formula p,(£2,/2) = —© yields

n
@l exp (—b/ﬂo,l -+ Z a@)] .
codim g+c—1

:—7‘['*

|:p*7)c(b§ a, an+1):|
(an+1 - b)2 An+t1:=b

=2

This immediately gives the induction step for parts (a) and (c) of the theorem. For part (b), we
also apply Theorem 7.1 to see that the steps we have taken (apply p., divide by (a,+1 — b)?, set
an+1 :=b) indeed act on the right side of (97) by replacing [ — 1 with [ and n + 1 with n.

For the remainder of the proof we assume ¢ = 0. We prove (a) and (b) by induction on the
genus. When g = 0, there is nothing to prove. Consider the map

3o : CH*(J,,,) — CH*(J2,)

as defined in (50). Let a € Z™ with ), a; = 0. By Proposition 8.1, it is sufficient to prove that

e [SZ(GXP ( Z azfz'))]

= (~1)%¢"uniDR; (a) = (~1)?DR(a),

codim=g

which is proven in Theorem 8.3. This proves (a) and (b).
We now prove (c). By Proposition 8.1 and the above argument, it suffices to show that

[Sylexp (—broa+ > ai)]  eR(L,) (98)

codim=c

for all codimension ¢, where R*(Jg%n) is the restriction of tautological ring (11) to Jg’n.

We proceed by induction, first on the genus and then on the codimension. For the base case
g = 0, there is nothing to prove. Assume the statement holds for all genera less than g. For
codimenions less than or equal to g, (98) was already established in (a) and (b). Now assume (98)
holds in codimension less than ¢, where taking the codimension ¢ part of (93), the left-hand side is
zero. The right-hand side reduces to

[(—1)Qg;(exp(—b/£071 + Z az&))} + [(—1)932 < eXp(—bHo,l + Z ai&)’yb;aﬂ

codim=c codim=c

g
| o
+ Z W]h*qh [(—1)9 hgg_h(exp(—lmojl + Z aifz’)(l + ’Yb;a)
h=1 i=1

2k;—1 2k;—1
“fvi _|_ﬁl @

h oo )
(=)™ By, a;
| 11;[1 kzz::l (2]@)' 0% + BZ >:| codim=c—h ’

By the induction hypothesis, the second term and the third term lie in the tautological subring.
Therefore (98) holds in codimension ¢, completing the proof of part (c). O

For the pushforward of monomials of divisors with 2¢ +m + " | k; < 2g, explicit formula of
the class v, does not play a role. When 20 +m + > , k; > 2g, the pushforward depends on the

stability condition—which can be easily checked over the locus M ;tn C My, of compact type curves.
Remark 8.4. Let ¢ : j;n_H — j;n be the projection used in the proof of Theorem 1.1. By Lemma

7.6 the same pushforward formula as in Theorem 7.7 holds for g.. Therefore, a similar argument to
that used in the proof of Theorem 1.1 (¢) generalizes Theorem 8.3 for monomials with © divisors.
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Remark 8.5. A natural question arises as to whether the intersection numbers on compactified
Jacobians possess a distinct structure. The generating series of the intersection numbers from
double ramification formulae with ¥-monomials satisfy a noncommutative Korteweg-de Vries (KdV)
hierarchy, as shown by Buryak and Rossi [14]. Therefore, Theorem 1.1 provides a partial answer to
this question, though further investigation is required.

8.3 Connection to the perverse filtration

Let 7 : Jo — B be the projection. By the Decomposition Theorem [13], the perverse truncation
functor associated to 7 induces the canonical increasing perverse filtation

PyH*(J,Q) C PLH*(J¢,Q) C -+ C PyyH*(J0,Q) = H*(J¢,Q) .

Lemma 8.6. Let m: M — B be a projective, flat morphism of relative dimension g, where M and
B are proper and smooth. For a class a € Pyy_1H*(M,Q), we have m,(a) = 0.

Proof. Let d = dim B and « € H°(M, Q). By the Poincaré duality on B, it suffices to show that
() UB =0 for all B € H 2(9+d)*C(B,Q). Since multiplying a cohomology class pulled back
from the base does not alter the perverse degree, we have o U *(3) € Pyy—1 H*9+) (M, Q). Let
w € H?(M,Q) be a relative ample divisor. By the relative Hard Lefschetz [13, Théoreme 5.4.10],
cupping with w9 induces an isomorphism of graded pieces:

—Uwd g B (M, Q) = grh, HYV2(M, Q). (99)

Since 7* : H*4(B,Q) = Q — PyH?*(M, Q) is nonzero, (99) implies that Py, 1 H>9+9) (M, Q) = 0.
Thus o U n*(8) = 0. By the projection formula, this implies 7. () U 8 = m (U *(5)) = 0. O

We give a proof of Theorem 1.1 (a) in cohomology following the idea of Maulik-Shen [41].
Proposition 8.7. Theorem 1.1 (a) holds in H*(M,,, Q).

Proof. Let 7 : J » — Mg, denote the projection. We use the notion of strong perversity as defined
in [41] and show that & and ko have strong perversity 1. By [45], building upon [56], the complex
Rm,Q has the full support, meanmg that any non-trivial simple perverse summand has support
equal to /\/lg n. Since &;, ko1 € H? ( g Q), it suffices to verify strong perversity being 1 over the
open locus M, ,, C Mgy,,. Over M, ,,, the morphism 7 is a torsor under the abelian variety ng.
Since n > 1, we can identify it with J!%n via twisting by a section. Under the twisting both &; (resp.
Ko,1) maps to & (resp. ko) modulo 1-class. Since 1)-class has perversity zero, pulled back from
Mg, it does not change the strong perversity. By [22, Section 3], & and ko 1 are weight 1 classes
so they have strong perversity 1 over M, ,. Therefore & and xo, satisfies strong perversity 1 over
My n.

The © divisor, by codimension considerations, has strong perversity 2. By [41, Lemma 1.3],
the strong perversity is multiplicative and hence the class 92(5071)’” H{f “ has strong perversity
204+m+ > ki. Applying [41, Lemma 1.2], we conclude that the monomial lies in (20 +m + > k;)-th
perverse filtation of H*(J g, Q). Since 2/ +m + > i ki < 2g, the pushforward to H* (M., Q)
vanishes by Lemma 8.6.

The independence of stability condition of Theorem 1.1 (b) in rational cohomology is reminiscent
of the “x-independence” phenomenon ([40]). Following [8, Section 0.3.3], we consider the strata
algebra PicSg , associated with Pic, ,. This is a Q-algebra freely generated by tautological classes.
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Given a choice of universal line bundle, there exists a realization map p : PicS,,, — H* (j;n, Q).
Let 2 = @K(mo,l)mfiﬂ o &ne PicSg, with 204+ m + Y | ki < 2g. For two different choices of
realizations p, p/, it is easy to check that p(Z) — p/(E) lies in P<29H*(j;n,(@). By Lemma 8.6,
7 (p(E)) € H* (Mg, Q) is independent of the choice of universal line bundle.

From Section 2.2, compactified Jacobians admit a map to the logarithmic Picard group. For
nondegenerate stability e; and e on M, ,,, consider a fiber diagram (see also [2, Section 6])

€12 hi €l
Jg’n Jg?”

-

€2 .
Jgn — LogPic, ,.

Let p1 and py be realization maps for €; and €3. Theorem 1.1 (b) raises the following question:

Question 8.8. Let = = 65(5071)"‘5?1 - -fﬁ" € PicSy . If 204+ m+>"7" | ki < 2g, does the difference
02(2) — (hn)a(h2)* (1 (2) lie in Posy H* (72, Q)7

A positive answer to the question of the perversity of the wall-crossing term will provide a
conceptual explanation of Theorem 1.1(b) in rational cohomology. For arbitrary o € PicS, ,, it is an
interesting question to find k such that p(a) € P H* (j;n, Q) \ Pk_lﬂ*(j;n, Q).

We thank Davesh Maulik, Miguel Moreira, and Qizheng Yin, whose comments led to the
formulation of the following remark.

Remark 8.9. By [42, Theorem 0.1], or through a mild generalization using [45], the perverse
filtration associated with 7 is multiplicative. Therefore the cup product descends to the associated
graded space grp H* (j;n, Q). Under the Poincaré duality, Theorem 1.1 (b) raises the question of

whether the ring structure on grpH *(j;n, Q) is independent on the stability condition. It would be
interesting to seek an explanation for such independence.

9 Weight decomposition and Fourier transforms

9.1 Weight decomposition

We discuss the generalization of Beauville [12] and Deninger-Murre [22]’s weight decomposition for
semi-abelian schemes. Any semi-abelian variety G can be written as an extension

0—-T—-G—A—=0

of an abelian variety A by a split torus 7. For a semi-abelian scheme 7 : G — B, the Kimura
dimension of m is defined by

kd(7) := max{2dim(A4) + dim(T}) : b € B}. (100)
For N € Z, consider the “multiplication by N map”
IN]: G = G. (101)
The weight w piece is defined by
CH() (G) :={a € CHY(G,Q) : [N]'a = N"a, for all N € Z}. (102)

The multiplicative splitting is proven by Ancona-Huber-Pepin Lehalleur [4, Theorem 4.9].
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Theorem 9.1 ([4]). The rational Chow group of G has the multiplicative decomposition

H*(Jg,Q) = @ CH7,) (J2).
In particular, if the weight of a class is greater than the Kimura dimension kd(r), it vanishes.

9.2 Leading term of partial Fourier transform

In Section 8, we studied the connection between §° (50) and ! both from CH*(J5) to CH*(J(%).
Here, we compute the leading term of §°(1) using Theorem 9.1. §° has a nice compatibility property
with the “multiplication by N” map (101).

Lemma 9.2. Let x € CH?(J¢, Q). If we write §°(z) = > g Yq With y, € CHq(J%,Q), then
[N]*y, = N9t Py, N € N.

Proof. By (18), we have
(I [N])*er(P) = N - ea(P). (103)

Then the result follows from the projection formula. See [12] and [22, Proposition 2.16]. O

We present the main calculation of this section.

Proposition 9.3. Let B = mg,n and 7 : J(% — B be the relative Jacobian. Then we have
0 ot
[gg(l)]codim:g = ? € CHg(Jg’ Q) .
Proof. We first compute §g(exp(—0)). By Lemma 5.10 and the projection formula, we have
8y (exp(=0)) = exp(0) - pa.p” exp(—0). (104)

Let OB := ﬂg_lyn_i'_Q and j : 0B — B be the gluing map. We also denote j : J%]aB — J% the
associated finite morphism. If w > 2g, we have CH’(kw)(J%) = 0 by Theorem 9.1. For 0J¢ := J¢c'\ J%,
we consider the excision sequence

CH* (8¢, Q) 25 CH* (To, Q) — CH*(J2,Q) — 0.

Since © has weight 2, if ¢ > g, then OF restricted to Jg vanishes. By the above excision sequence,
©°¢ is supported on 9.Jc. The pullback of (8) to d.J¢ yields
I 87(; XoB J%‘BB — (97(;.

If ¢ > g, using the projection formula, the class po,u*(©°) = 0 lies in the image of j.. Therefore,
(104) can be written by

Fo(—exp(©)) = exp(0) - (1 + Imj.). (105)
By Theorem 9.1, one can take the pure weight pieces of (104). Taking the codimension g part

of (105), we get
3 [s;((

k=0
By Lemma 9.2, we have

ok
[%g(@ )]codim g € CH?ZQ k:)(JC)
The weight 2g part of the left hand side is [§}(1)]codim=g- Since the Kimura dimension (100) of the

boundary Jg]aB drops to 2g — 1, the weight 2¢ piece of Im j, vanishes by Theorem 9.1. Therefore
the weight 2g part of the right hand side is % and we get the equality. O
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9.3 Universal double ramification cycle formula over the treelike locus

Let ﬂgﬂn C ngn be the locus of treelike curves—these are stable curves whose graph is a tree
with any number of self-loops attached, which is an open substack of mg,n- It can be uniquely

characterized as the largest open substack of M, , where every Abel-Jacobi section extends [35].
We give a proof of the universal double ramification formula (Proposition 8.2) on Jgn MY

g’n’
independent from [8]. We use compatibility of Fourier transform and the group structure of Jgn.
Over ﬂ;}n, the compactified Jacobians are isomorphic to the relative moduli space of multidegree

. . . —tl
zero, rank 1 torsion free sheaves, and we denote the compactified Jacobian of degree 0 by 7 : J ;n —

/Vlgtln For b € Z and a € Z™ with Y I | a; = (29 — 2 + n)b, the twisted ©-divisor is defined by

b2 1 n n .
Oba = O + bk + k1 + 5 Y afvi+ Y ai& + 7 Dya, (106)
=1 =1

Here Dy, is a divisor class given by

Dya =Y (T, b;a)[l],

r

where the sum is over all stable graphs I' with exactly two vertices connected by a single edge
described by partition (g, I1]g2, I2) and ¢(I',b;a) = —(3_;c;, @i — b(2g1 — 2+ |11 + 1))?. We refer
[8, Section 4.1] for the further explanations.

The combinatorics of the universal double ramification formula (77) gets simplified over Mgtln
For h > 0, let jj, : ﬂ;ﬂ_g,n;zh — ﬂgﬂn be the restriction of the gluing map to ﬂ;ﬂn In general,
ﬂ;ﬂ_h,n;gh is an open substack of Mﬁ_hmﬂh.

Lemma 9.4. Let Jg%n — M;n be the relative Jacobian. For b € Z and a € Z™ with ) ;" ; a; =
(29 — 2 +n)b, let P{(b;a) be the universal double ramification formula (77) restricted to JgQ,n.

(a) For all ¢, we have

(_1)h(jh) H — B, (iﬁhi—i—qph;)ki—l

™ S, € CHY(J2,,).-

codim=c

g
P¢(bsa) = |exp(Opa) -
h=0 ’ i=1 \k;=

(b) For all ¢, we have ﬁg(b; a) = M

C

Proof. We apply [8, Proposition 4.1]. The divisor inside the exponential in [8, eq (4.2)] coincides
with (106). Both (a) and (b) follows from Faulhaber’s formula applied to the contribution from the
r-weights. O

We replace Theorem 8.3 by the below:

Proposition 9.5. For any b € Z and a € Z" with "' ; a; = (29 — 2 + n)b, suppose that we have
3t (exp(—bko1 + >, ai&;)) = Ph(b;a) for all genus h less than g. Let = € CH*(j}tL{n) be any
monomial of £ and kg i-classes. For any genus h less than g, we have

(a) §;(2) € CH="(J; ), and
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o Op:a h
(b) [(~1)"F (exp(=bro + Loy ) eodimen = -
Proof. We first prove (a) by induction on h. Suppose the statement holds for all genera less than h.
By assumption, we have §, *(exp(—bko1 + Y1, ai&;)) = Pl (b;a) € CHh(Jf%n). From Lemma 9.4
(a) the polynomiality of P (b;a) in b, a follows from the polynomiality of (106). Therefore, for any
monomial = of £ and kg 1-classes, we have §, ' (Z) € CHh(J,%). By Proposition 4.6 and Proposition
5.9, we get

h 1 k B 2k; — 2ki—1
3, '(3) = (—1)h32(5)+z QTf,(jf)*( )" f( H Z % % o T_% ) . (107)
f=1 ’ i=1k;= v v

where o; = Vpyi — Engi + St pi and B = Yy i + Enti — Engpri- The term inside Sfl_f is a
polynomial in v, &; and kg 1-classes. By linearity of S;_h, 1p-classes can be factored out. By the
induction hypothesis, these terms has codimension at least h —g, so (j)+Sj,_ (- - -) has codimension

at least h. Therefore, we conclude that 37 (=) € CH>h(Jh n)-
Similarly, we prove (b) by induction on h. Suppose the statement holds for all genera less than
h. In (107), we substitute Sy, := exp(—bro,1 + > rq ai&):

h [ ki 2k;— 2k;—1
s o 1. o [ BQk afbiml 4 g2k
B! (Ena) = (1 (E0) 4 3 g7 (e 1T (Zne HZ )
f=12 ! e o + Bi

(108)
Take codimension h part of each term in (108). By (a), within §j_,(---), only pure monomials of
and kg 1 classes will contribute. By the induction hypothesis, the boundary term takes the form

e (e T _ @ (2k; — 1)! f¥n, + Ypr\ ki1
[(*1)h fgh_f(:b;a'il_[l(fhifh;)%l 2)]Codim:h—f ba l k: —1 < : 2 hl)

modulo relations &, — & = -+ = &, — &y, = 0. Here, k := Zl k; and the relations are from
1 f
Lemma 2.3. By Lemma 9.4 (a), the boundary term of the right hand side (108) aligns, leading to

h
[(_l)th(Eb;a)]codim:h = (@Ibﬁa) . ]

We prove the main result of this section. Over ./\/l there exists a unique piecewise linear function

g
o on the universal curve such that the line bundle w 10%(2?:1 a;z;) ® Oc(a) has multidegree zero

for all underlying curves in ﬂgﬂn After twisting by «, the Abel-Jacobi section aj, : ﬂgﬂn — j;}n
is well-defined and factors through Jg%n.

Theorem 9.6. Let Jﬁn — M;}n be the relative Jacobian. For any b € Z and a € Z" with
Z?zl a; = (29 — 2+ n)b, we have

[ajia) = P§(b:a) € CHI(JZ,,). (109)

Proof. We prove this by induction on the genus. For g = 0 the statement is trivial. Suppose we
know (109) for genus h less than g. We first prove (109) for ¢ = 0 and a = 0. By Proposition 5.2,
we get [e] = §,*(1). By Proposition 9.5 (a), after taking the codimension g part, we get

[6] = [(_1)932(1)]00dim:g+2 ﬁ(‘]h)* |:( g hgg h(H Z B2k (ghi_gzi)2k¢*2)}

h=1 1=1k;=1
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By Proposition 9.5 (b), the right hand side matches with Lemma 9.4. This finishes the proof for
genus g with a = 0.

We prove for arbitrary b € Z and a € Z™ with > ;" | a; = (29 — 2+ n)b. Let « be the unique
piecewise linear function on the universal curve necessary to construct the Abel-Jacobi section.
Then, the Abel-Jacobi section can be written as

. ~ ——tl —tl
Apa = Prace: Mg, = Jg .,

—— tl —tl . . . - . <t
where e : M, — J,, is the unit section and ¢y, is an automorphism of J , induced by

L—L® ng_obg(zglzl a;x;) ® Oc(a). By (106) and Lemma 9.4, we have 5*_,);_3P;(0; 0) = Pg(b; a).
Therefore, by twisting (109) for a = 0 with respect to 51,;3, we have

[@Jp,a] = @74, _ale] = 074, _,P(0;0) = Pg(b; a).
Thus we obtain the result from the induction. O

By the argument in Section 8.2, Theorem 9.6 gives an independent proof of Theorem 1.1 over
—— tl
B=M_,, for £ =0.

9.4 Fourier transform for principally polarized abelian schemes

We extend our argument in the previous sections to abelian schemes. Let 7 : A — B be a principally
polarized abelian scheme (p.p.a.s.) of relative dimension g over a smooth scheme B. Let e : B — A
be the unit section and let p: A xg A — A be the addition. For n > 1, we denote

A" :=Axp---xpA (n-times),

and A := B. For 1 < i < n, let p; : A" — A be the i-th projection and for 1 < i < j < n, let
pij : A" — A xp A be the projection to i, j-th factor. Let A, := ¢, (E) € CH™(B) be the m-th
Chern class of the Hodge bundle E := 7.

For an abelian scheme A — B, let A := Pic?4 /B denote the dual abelian scheme and let P be the

Poincaré line bundle on A x g AV which is trivialized along the unit sections. Assume that A — B
is principally polarized; that is, there exists a polarization A : A — AY which is an isomorphism.

We identify (id,\): A xp A = A xp AV. Consider a Q-line bundle
Ly = ((e,A)*P)""/? € Pic(4) ®z Q

which is relatively ample, symmetric and trivialized along the unit section. Let © := ¢;(Ly) € CH!(A).
For 1 <i<mn,let ©; :=p;O and for 1 <i # j <n, let {;; := pj;c1(P) in CHY(A™).

Definition 9.7. The tautological ring R*(A™) is the subring of CH*(A™, Q) generated by classes
{©iti<i<n, {lijh<izi<n, {Amti<m<g-

For n > 1, we consider a p.p.a.s. 7 : A" — A"~ where 7 is the projection along the first n — 1
factors. Under the weight decomposition (102), the weights of tautological classes are given by

O, € CH(y(A™), and £;, € CH{j(A™), 1 <i<n—1. (110)

The first follows from the fact that ©,, is a symmetric ample class and the second follows from
the Theorem of Square. Other generators of tautological ring has weight zero. Since the weight is
multiplicative, (110) determines the weight of all tautological classes.
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We consider sections of 7 : A" — A" ! induced from the group structure. Let a € Z"~! be a
vector of integers. We define the m-relative translation automorphism by

Ta: A" = A" (x1,...,20) — (1, Tp—1,Tn +@1T1 + - F Qp—1Tp—1) . (111)
For a € Z™ 1, the translation section is defined by o, := T,0e: A" 1 — A"

Lemma 9.8. For a € Z"!, we have 72(0,) = 0, + X" ailin + ' a?

1,1 "
Proof. We write (111) as follows. Consider the composition p, : A” M A" £ A where
the first morphism is the “multiplication by N” map with the prescribed multiplicity and ., is the
addition. For p: A xp A — A, we have the Mumford formula

p(©) = —li2 + pi© + P50 . (112)

For the morphism g xid: Axp Axp A — A xp A, we have (u X id)*¢12 = €13 + l23 by the theorem
of the cube. Therefore we get 1, (0) = > 1<, bij + D iy ©i.

From the weight of divisors (110), the pullback of tautological classes along the map (a1, ..., an—1,1)
is clear. Since 7}(©) = 77p;(0) = pk(©), the result follows. O

We consider the Fourier-Mukai transform ([52, 22])
§ = ch(P) = exp(bnn+1) : CH*(A™) — CH*(A"). (113)

Proposition 9.9. Let a € Z"! be a vector of integers. Then we have

n—1
zgzn

Hexp(Y_ ailin)) = Ot i gl RIAEADS (114)
i=1 ’

Proof. By the argument in Proposition 9.3, we have §(exp(©,,)) = exp(—©,,). By Proposition 5.2
and [22, Lemma 2.18], we have

. On)9
=57 = & (115)
The pullback of (115) along (111) follows from Lemma 9.8. By the argument in the proof of Theorem
9.6, we get the result. O

Theorem 9.10. The Fourier-Mukai transform (113) preserves tautological classes. Moreover, proper
pushforward along the projection 7 : A” — A™~! preserves tautological classes.

Proof. Let o := (0,)™(l15—1)F - -+ (€y_1,)F» € R*(A™). Since § is linear over the base, it suffices to
check that the image §(«) is tautological. For simplicity, we write k = E?:_ll ki. fm+k<g, by
Proposition 9.9, we have §(«) € R*(A™).

We assume m + k > g. The class a has weight 2m + k. By weight vanishing part of Theorem

9.1, we may assume 2m + k < 2g. Additionally, since ©,, € CH%Q) (A™), we have (0,)¢ =0 for ¢ > g.

For a € Z" !, we consider the translation automorphism (111). By Lemma 9.8, for ¢ > g, we have:

n—1 n—1
nt Y ailin+ Y a70;)" =0, (116)
=1 i=1

Using the polynomiality of the relation (116) in a;’s we can further decompose (116). Therefore the
class o can be written as a momomial o/ of ©,, and /;, classes of degree less than or equal to g,
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multiplied by classes that are polynomial in ©1,...,0,_1. As § is linear over the base, we have
reduced to the case when m + k < g. Therefore § preserves tautological classes.

By using a similar argument as in Proposition 8.1, we find m,(a) = e*§(«) for all « € CH*(A4,,).
Clearly e* : CH*(A™) — CH*(A™!) preserves tautological classes. Thus, by the argument above,
the pushforward along 7 : A” — A™~! preserves tautological classes. O

By the argument in Theorem 9.10, we get a closed formula for 7, : R*(A") — R*(A"~1).

Corollary 9.11. Let kq,...,k,—1 € Z>¢. If all k; are even and 2m + Z?;ll k; = 2g, then we have

O (i) (g OFF O
kn—l! (k1/2)| (kn_l/z)l .

(o oy

Otherwise, the pushforward is zero.

9.5 Torus rank at most one locus

Let A; C Aj be the canonical partial compactification of rank 1 degenerations [53]. Let  :
Xy — Aj be the universal family and let X7 — A} be the universal semi-abelian scheme. We
adapt the argument from the previous sections to study the intersection theory of this family. Let
s Xg X ar X — X, be the natural action. Then the tuple

(m: Xy — AL, Xy — A X XA X, — X)) (117)

is a degenerate abelian scheme in the sense of Arinkin-Fedorov [7, Definition 2.1].
We show that the auto-equivalence of & extends to Xé. Let © be the principal polarization of
X, — A,y which is trivialized along the unit section. By slight abuse of notation, let © also denote a
relatively ample class on Xg’ that extends this polarization. Following [7], the Poincaré line bundle
P on X7 x 4 X defined by
P =u"0xpeYep;0Y (118)

which extends to a line bundle P on X x 4, Xy U A&y < A, X For compactified Jacobians, the failure

to extending the Poincaré line bundle to the product Jo xp Jc was attributed to the lack of a
common universal curve on the two factors. For X, g’, the failure to extend P is that the multiplication
map g does not extend to A XAy ;.

We can resolve the indeterminacy of the action u for any toroidal compactification of X, — A,.
Let Ay := Sym?,(Z9)/GL,(Z) be the moduli space of principally polarized tropical abelian varieties
and let Xy trop .Atmp be the the universal tropical abelian variety. Any toroidal compactification
X — .A corresponds to a subdivision ¥4 of At °P and a subdivision Y x of ¥ 4] xiro: Let

. yptrop trop trop
/.L . Xg X.A';;Op Xg — Xg

be the multiplication map. Let 5 — Y x be the base change of p: Xx x5, Xx — thr°p|gA along
YXx — thr°p|gA. This subdivision defines a log modification f : y’; — ?g X4, ?g together with a
map i : 25 — X, extending the multiplication map on X° XAy X, U X x4y Xy

We specialize to X, — A}. Inside any Ay, A} sits as the inverse image of Ay LI Ay 1 from
Satake compactification and Xg’ is the unique minimal family that contains the identity section in
its smooth locus. The restriction of ?Z to the locus Aj is denoted by X;". The fan ¥4 restricts
to the ray Rsg, and X;"P|x, is the torus with fiber R/¢Z over £ € R+ (and a point over 0). The
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subdivision Yy is the subdivision of R/¢Z adding the lattice points ¢Z. Therefore, X% over the
torus-rank 1 locus is the subdivision of the product R/¢(Z xg_, R/¢Z along the diagonal

x4y = 0(mod (Z)

By the same analysis as in Theorem 1.2 (a), Xg’ XA Xg’ has ordinary double point singularities,
and X} is a small resolution, i.e. it is smooth and the complement of X° x A Xy U X x A, Xy has
codimension 2. Moreover, nontrivial fibers of f : X} — Xg’ XA Xé are Pls.

Proposition 9.12. Let P be the unique line bundle on X} which extends P. Then the degree of P
on the exceptional fibers of f: X" — & XAy Ay is 1.

Proof. The exceptional locus of f is a P!-bundle over the boundary of A’g, so we check the degree on
any given fiber. Under the Torelli map, it is enough to check the degree over a point corresponding

to a J¢ where C is an integral curve with one one self-node. Two resolutions jg) and the resolution
Jé given by X} of Jo x J¢ corresponds to two different Atiyah flops of ordinary double point

singularity. To compare two, we form the common refinement jlé of 7((?) and 7‘5 as follows. The
product Jo x J¢ is locally modeled on the toric variety

{(e,, el e, . 00): b, + 00 =L}

€17 7ve1r vegr veg
and J corresponds to the subdivision min(¢;,, £7,, ., ,¢,). Following Definition 3.3 and Definition

3.7, the multiplication map on jg has the following modular description:
wC = Ci, L) = Li| ® Lo|g(a)

where « is the unique piecewise linear function up to pullback from the base such that the line
bundle L;|5 ® La|z(c) is stable on C.

We compute a. Let I' be the tropical curve associated to C' which has a single vertex v with a
loop, where we fix some orientation. The tropical curves I'; associated to C; have one additional
vertex w; at distance £, , /., from v respectively, measured with respect to the given orientation;
the tropical divisors associated to L, Lo have degree —1 at v and 1 at the exceptional vertex.
We look first at the cone of jbc where £, is minimal. We form the tropical curve which is the
subdivision of " at a vertex u at distance £, + /£, from v in the given orientation. Since /£, is
minimal, £, + ¢, <, + (! = L., and hence in the given orientation we have an oriented path
v, Wy, w1, u,v. We form the tropical D, divisor with degree —1 at v and 1 at u. Then, we have

Dy+Dy— D, = le(Oé)

where a has slope 1 from v to ws, slope 1 from u to w1, and slope 0 elsewhere”. If we normalize o

so that a(v) = 0, it follows that a(w;) = a(ws) = €,,, and a(u) = 0. A similar calculation at the

other cones of 7 shows that in general o(wi) = a(wz) = min(€, , £, 00 L7,).
We now compare two models of extended Poincaré line bundles. By the bilinearity of the Deligne

pairing, we have

©O —pi0 — pa® = —c1((La, La)) — e1({L1, O(a))) — e1({L2, O(@))) — %Cl(((?(a), O(a))) . (119)

"We are using here the convention that the multidegree of O(a) is —div(a).
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Since a(w;) = min(€, , 0. €7 07 ), using Lemma 5.5, the last three terms of (119) is

€e17’7vex?r ey e

—min(¢, 0L 07 07 ) —min(, 0L 00 07 ) +min(el 0 07 00 ) = —min(€, 0, 00 07

e1’ver vey) e e1’ve’r ey e e1reg) e’ e e1regr e Feg

which is the negative of the class of the exceptional divisor E of 71)0 — Jo x Jo. The degree

of — (L1, Ly) has been calculated to be —1 on the exceptional Ps of J( ) in Theorem 1.2. On
the blowup of the ordinary double point the line bundle ;*© — pj© — p30O is thus represented by
—FE — D, where D is the strict transform of one of the two Weil divisors that are not blown up
in the construction of the flop 7(5) — Jo x Jo. If B denotes the strict transform of one of the
adjacent Weil divisors to D, the divisor —E — D — B is rationally equivalent to 0%; hence we have

P=-E-D~B

on the exceptional fibers of 716 — JoxJo. The divisor B does not get blown up in the complementary
flop J ’é — Jo x J¢, and so descends to a Cartier divisor on .J g, where it has degree 1. ]

Proof of Theorem 1.5. By Proposition 9.12 and following the argument in Theorem 1.2, the derived
pushforward P := Rf,P is a maximal Cohen-Macaulay sheaf extending P. To show that P induces
an auto-equivalence we follow [6]. This follows from the cohomology calculation in [7, Theorem 1]
and the fact that : X — qu is a d-regular family. O

We adapt (33). The boundary A} \ A, admits a natural two-to-one cover i : X1 — A} \ Ay.
Consider the diagram

! !
Xyg1 XA,y Xgo1 —— Xglx, ., —— A&

\ l lﬁ (120)

Xyt — AL

where p; is the first projection. By [23], the boundary of A’g is naturally identified with the dual
abelian fibration Xg\/_ . Here, we identified it with X,;_; using the principal polarization.

If we restrict Xy — .A; to the boundary 4, then it is a Gy,-torsor over Xy x 4, , X5—1. Let g be
the projection from the torsor to Xy x 4, Xy—1.

Proof of Theorem 1.6. From Theorem 1.5, let § : CH*(&X]) = CH* (&) be the Fourier transform
and F~! be its inverse with the normahzatlon as in (40) and (41). By the same argument in
Proposition 5.2, we get [e] = F1(1). Let E := F*Qﬂ_ log De the Hodge bundle. By [24], ¢(E)c(EY) = 1
still holds. The Todd class of the residue sheaf 7?, has the same formula as in Proposition 4.6
with the normal bundle of the codimension two stratum calculated in [23]. Proposition 9.3 and
Proposition 9.9 applied to the inductive structure in Section 9.3 give the result. 0

Theorem 1.6 coincides with [32, Theorem 1.1] over X7. After pulling back Theorem 1.6 along
the unit section, we recover [23, Theorem 1.1].

For more degenerate families 7 : X, — Ay, such as Alexeev’s compactification [3, 58], the
singularities of X X7, X, get more complicated, and d-regularity breaks down. It remains an
interesting question whether we can generalize our construction to such degenerate abelian schemes.

8For instance, if we take (0,0,1),(1,0,1),(0,1,1),(1,1,1) as the four vertices of the square, D the bottom right
vertex, B the bottom left, then —F — D — B is the divisor of the character e5 — e3, where e are the standard
coordinates of Z3.
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